Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7982): 393-401, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821590

RESUMO

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Assuntos
Rejeição de Enxerto , Transplante de Rim , Macaca fascicularis , Suínos , Transplante Heterólogo , Animais , Humanos , Animais Geneticamente Modificados , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Rim/métodos , Polissacarídeos/deficiência , Suínos/genética , Transplante Heterólogo/métodos , Transgenes/genética
2.
Am J Transplant ; 22(1): 46-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331749

RESUMO

Porcine cells devoid of three major carbohydrate xenoantigens, αGal, Neu5GC, and SDa (TKO) exhibit markedly reduced binding of human natural antibodies. Therefore, it is anticipated that TKO pigs will be better donors for human xenotransplantation. However, previous studies on TKO pigs using old world monkeys (OWMs) have been disappointing because of higher anti-TKO pig antibodies in OWMs than humans. Here, we show that long-term survival of renal xenografts from TKO pigs that express additional human transgenes (hTGs) can be achieved in cynomolgus monkeys. Kidney xenografts from TKO-hTG pigs were transplanted into eight cynomolgus recipients without pre-screening for low anti-pig antibody titers. Two recipients of TKO-hTG xenografts with low expression of human complement regulatory proteins (CRPs) (TKO-A) survived for 2 and 61 days, whereas six recipients of TKO-hTG xenografts with high CRP expression (TKO-B) survived for 15, 20, 71, 135, 265, and 316 days. Prolonged CD4+ T cell depletion and low anti-pig antibody titers, which were previously reported important for long-term survival of αGal knock-out (GTKO) xenografts, were not always required for long-term survival of TKO-hTG renal xenografts. This study indicates that OWMs such as cynomolgus monkeys can be used as a relevant model for clinical application of xenotransplantation using TKO pigs.


Assuntos
Transplante de Rim , Animais , Animais Geneticamente Modificados , Rejeição de Enxerto/genética , Humanos , Macaca fascicularis , Suínos , Transplante Heterólogo
3.
Xenotransplantation ; 29(6): e12780, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36125388

RESUMO

The phenomenon of diminishing hematocrit after in vivo liver and lung xenotransplantation and during ex vivo liver xenoperfusion has largely been attributed to action by resident liver porcine macrophages, which bind and destroy human erythrocytes. Porcine sialoadhesin (siglec-1) was implicated previously in this interaction. This study examines the effect of porcine genetic modifications, including knockout of the CMAH gene responsible for expression of Neu5Gc sialic acid, on the adhesion of human red blood cells (RBCs) to porcine macrophages. Wild-type (WT) porcine macrophages and macrophages from several strains of genetically engineered pigs, including CMAH gene knockout and several human transgenes (TKO+hTg), were incubated with human RBCs and "rosettes" (≥3 erythrocytes bound to one macrophage) were quantified by microscopy. Our results show that TKO+hTg genetic modifications significantly reduced rosette formation. The monoclonal antibody 1F1, which blocks porcine sialoadhesin, significantly reduced rosette formation by WT and TKO+hTg macrophages compared with an isotype control antibody. Further, desialation of human RBCs with neuraminidase before addition to WT or TKO+hTg macrophages resulted in near-complete abrogation of rosette formation, to a level not significantly different from porcine RBC rosette formation on porcine macrophages. These observations are consistent with rosette formation being mediated by binding of sialic acid on human RBCs to sialoadhesin on porcine macrophages. In conclusion, the data predict that TKO+hTg genetic modifications, coupled with targeting of porcine sialoadhesin by the 1F1 mAb, will attenuate erythrocyte sequestration and anemia during ex vivo xenoperfusion and following in vivo liver, lung, and potentially other organ xenotransplantation.


Assuntos
Ácido N-Acetilneuramínico , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Suínos , Animais , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transplante Heterólogo/métodos , Ácido N-Acetilneuramínico/metabolismo , Macrófagos , Eritrócitos/metabolismo
4.
Nucleic Acids Res ; 47(5): 2402-2424, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30590694

RESUMO

Fusion of critically short or damaged telomeres is associated with the genomic rearrangements that support malignant transformation. We have demonstrated the fundamental contribution of DNA ligase 4-dependent classical non-homologous end-joining to long-range inter-chromosomal telomere fusions. In contrast, localized genomic recombinations initiated by sister chromatid fusion are predominantly mediated by alternative non-homologous end-joining activity that may employ either DNA ligase 3 or DNA ligase 1. In this study, we sought to discriminate the relative involvement of these ligases in sister chromatid telomere fusion through a precise genetic dissociation of functional activity. We have resolved an essential and non-redundant role for DNA ligase 1 in the fusion of sister chromatids bearing targeted double strand DNA breaks that is entirely uncoupled from its requisite engagement in DNA replication. Importantly, this fusogenic repair occurs in cells fully proficient for non-homologous end-joining and is not compensated by DNA ligases 3 or 4. The dual functions of DNA ligase 1 in replication and non-homologous end-joining uniquely position and capacitate this ligase for DNA repair at stalled replication forks, facilitating mitotic progression.


Assuntos
Cromátides/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Ligase Dependente de ATP/genética , Mitose/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Replicação do DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Células HCT116 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Troca de Cromátide Irmã/genética , Telômero/genética
5.
Genome Res ; 27(7): 1099-1111, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28356322

RESUMO

The use of programmable meganucleases is transforming genome editing and functional genomics. CRISPR/Cas9 was developed such that targeted genomic lesions could be introduced in vivo with unprecedented ease. In the presence of homology donors, these lesions facilitate high-efficiency precise genome editing (PGE) via homology-directed repair (HDR) pathways. However, the identity and hierarchy of the HDR (sub)pathways leading to the formation of PGE products remain elusive. Here, we established a green to blue fluorescent protein conversion system to systematically characterize oligodeoxynucleotide (ODN)-mediated PGE using Cas9 and its nickase variants in human cells. We demonstrate that, unlike double-stranded DNA (dsDNA) donors with central heterologies, ODNs generated short conversion tracts with Gaussian-like distributions. Interestingly, single-nick-induced PGE using ODN donors produced conversion tracts biased either mostly uni- or bidirectional depending on the relative strandedness of the ODNs and the nick. Moreover, the ODNs were physically incorporated into the genome only in the bidirectional, but not in the unidirectional, conversion pathway. In the presence of double-stranded genomic lesions, the unidirectional conversion pathway was preferentially utilized even though the knock-in mutation could theoretically have been converted by both pathways. Collectively, our results suggest that ODN-mediated PGE utilizes synthesis-dependent strand annealing and single-stranded DNA incorporation pathways. Both of these pathways generate short conversion tracts with Gaussian-like distributions. Although synthesis-dependent strand annealing is preferentially utilized, our work unequivocally establishes the existence of a single-stranded DNA incorporation pathway in human cells. This work extends the paradigms of HDR-mediated gene conversion and establishes guidelines for PGE in human cells.


Assuntos
Sistemas CRISPR-Cas , DNA , Edição de Genes/métodos , Oligodesoxirribonucleotídeos/química , Linhagem Celular , DNA/genética , DNA/metabolismo , Humanos , Oligodesoxirribonucleotídeos/genética
6.
Nucleic Acids Res ; 45(20): 11837-11857, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29059323

RESUMO

Fanconi anemia (FA) is an inherited cancer predisposition syndrome characterized by cellular hypersensitivity to DNA interstrand crosslinks (ICLs). To repair these lesions, the FA proteins act in a linear hierarchy: following ICL detection on chromatin, the FA core complex monoubiquitinates and recruits the central FANCI and FANCD2 proteins that subsequently coordinate ICL removal and repair of the ensuing DNA double-stranded break by homology-dependent repair (HDR). FANCD2 also functions during the replication stress response by mediating the restart of temporarily stalled replication forks thereby suppressing the firing of new replication origins. To address if FANCI is also involved in these FANCD2-dependent mechanisms, we generated isogenic FANCI-, FANCD2- and FANCI:FANCD2 double-null cells. We show that FANCI and FANCD2 are partially independent regarding their protein stability, nuclear localization and chromatin recruitment and contribute independently to cellular proliferation. Simultaneously, FANCD2-but not FANCI-plays a major role in HDR-mediated replication restart and in suppressing new origin firing. Consistent with this observation, deficiencies in HDR-mediated DNA DSB repair can be overcome by stabilizing RAD51 filament formation in cells lacking functional FANCD2. We propose that FANCI and FANCD2 have partially non-overlapping and possibly even opposing roles during the replication stress response.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Sequência de Bases , Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Cromatina/genética , Cromatina/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Células HCT116 , Humanos , Immunoblotting , Mutação , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Homologia de Sequência do Ácido Nucleico
7.
PLoS Genet ; 10(4): e1004251, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699519

RESUMO

Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.


Assuntos
Reparo do DNA/genética , DNA/genética , Recombinação Genética/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , DNA Cruciforme/genética , Marcação de Genes/métodos , Vetores Genéticos/genética , Células HCT116 , Humanos
8.
PLoS Pathog ; 8(8): e1002862, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912580

RESUMO

Production of concatemeric DNA is an essential step during HSV infection, as the packaging machinery must recognize longer-than-unit-length concatemers; however, the mechanism by which they are formed is poorly understood. Although it has been proposed that the viral genome circularizes and rolling circle replication leads to the formation of concatemers, several lines of evidence suggest that HSV DNA replication involves recombination-dependent replication reminiscent of bacteriophages λ and T4. Similar to λ, HSV-1 encodes a 5'-to-3' exonuclease (UL12) and a single strand annealing protein [SSAP (ICP8)] that interact with each other and can perform strand exchange in vitro. By analogy with λ phage, HSV may utilize viral and/or cellular recombination proteins during DNA replication. At least four double strand break repair pathways are present in eukaryotic cells, and HSV-1 is known to manipulate several components of these pathways. Chromosomally integrated reporter assays were used to measure the repair of double strand breaks in HSV-infected cells. Single strand annealing (SSA) was increased in HSV-infected cells, while homologous recombination (HR), non-homologous end joining (NHEJ) and alternative non-homologous end joining (A-NHEJ) were decreased. The increase in SSA was abolished when cells were infected with a viral mutant lacking UL12. Moreover, expression of UL12 alone caused an increase in SSA, which was completely eliminated when a UL12 mutant lacking exonuclease activity was expressed. UL12-mediated stimulation of SSA was decreased in cells lacking the cellular SSAP, Rad52, and could be restored by coexpressing the viral SSAP, ICP8, indicating that an SSAP is also required. These results demonstrate that UL12 can specifically stimulate SSA and that either ICP8 or Rad52 can function as an SSAP. We suggest that SSA is the homology-mediated repair pathway utilized during HSV infection.


Assuntos
Replicação do DNA , DNA de Cadeia Simples/metabolismo , DNA Viral/biossíntese , Desoxirribonucleases/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Recombinação Homóloga , Proteínas Virais/metabolismo , DNA de Cadeia Simples/genética , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/genética , Células HEK293 , Herpes Simples/genética , Humanos , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas Virais/genética
10.
Nat Biomed Eng ; 5(2): 134-143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32958897

RESUMO

The clinical applicability of porcine xenotransplantation-a long-investigated alternative to the scarce availability of human organs for patients with organ failure-is limited by molecular incompatibilities between the immune systems of pigs and humans as well as by the risk of transmitting porcine endogenous retroviruses (PERVs). We recently showed the production of pigs with genomically inactivated PERVs. Here, using a combination of CRISPR-Cas9 and transposon technologies, we show that pigs with all PERVs inactivated can also be genetically engineered to eliminate three xenoantigens and to express nine human transgenes that enhance the pigs' immunological compatibility and blood-coagulation compatibility with humans. The engineered pigs exhibit normal physiology, fertility and germline transmission of the 13 genes and 42 alleles edited. Using in vitro assays, we show that cells from the engineered pigs are resistant to human humoral rejection, cell-mediated damage and pathogenesis associated with dysregulated coagulation. The extensive genome engineering of pigs for greater compatibility with the human immune system may eventually enable safe and effective porcine xenotransplantation.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética/métodos , Células Germinativas/metabolismo , Sus scrofa/genética , Sus scrofa/virologia , Transplante Heterólogo , Animais , Proteína 9 Associada à CRISPR/genética , Células Cultivadas , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Oxigenases de Função Mista/genética , N-Acetilgalactosaminiltransferases/genética , Sus scrofa/imunologia
11.
Methods Mol Biol ; 1999: 131-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127573

RESUMO

Homology-directed genome editing is the intentional alteration of an endogenous genetic locus using information from an exogenous homology donor. A conversion tract is defined as the amount of genetic information that is converted from the homology donor to a given strand of the targeted chromosomal locus. Because of this, conversion tract analysis retrospectively not only elucidates the mechanism of homology-directed genome editing but also provides valuable insights on the conversion efficiency of every nucleotide in the homology donor. Here we describe a blue fluorescent protein-to-green fluorescent protein conversion system that can be conveniently used to measure the efficiency and analyze the lengths of conversion tracts of homology-directed genome editing using oligonucleotide donors in mammalian cells.


Assuntos
Edição de Genes/métodos , Proteínas Luminescentes/genética , Reparo de DNA por Recombinação , Sistemas CRISPR-Cas/genética , Linhagem Celular , Genes Reporter/genética , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Proteínas Luminescentes/química , Oligonucleotídeos/genética , Cultura Primária de Células/métodos , Transfecção/métodos
12.
DNA Repair (Amst) ; 55: 64-75, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28549257

RESUMO

Homology-directed repair (HDR) maintains genomic integrity by eliminating lesions such as DNA double-strand breaks (DSBs), interstrand crosslinks (ICLs) and stalled replication forks and thus a deficiency in HDR is associated with genomic instability and cancer predisposition. The mechanism of HDR is best understood and most rigorously characterized in yeast. The inactivation of the fungal radiation sensitive 52 (RAD52) gene, which has both recombination mediator and single-strand annealing (SSA) activities in vitro, leads to severe HDR defects in vivo. Confusingly, however, the inactivation of murine and chicken RAD52 genes resulted in mouse and chicken cells, respectively, that were largely aphenotypic. To clarify this issue, we have generated RAD52 knockout human cell lines. Human RAD52-null cells retain a significant level of SSA activity demonstrating perforce that additional SSA-like activities must exist in human cells. Moreover, we confirmed that the SSA activity associated with RAD52 is involved in, but not absolutely required for, most HDR subpathways. Specifically, a deficiency in RAD52 impaired the repair of DNA DSBs and intriguingly decreased the random integration of recombinant adeno-associated virus (rAAV). Finally, an analysis of pan-cancer genome data from The Cancer Genome Atlas (TCGA) revealed an association between aberrant levels of RAD52 expression and poor overall survival in multiple cancers. In toto, our work demonstrates that RAD52 contributes to the maintenance of genome stability and tumor suppression in human cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Neoplasias/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Instabilidade Genômica , Humanos , Neoplasias/genética , Neoplasias/mortalidade , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo
14.
Science ; 357(6357): 1303-1307, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28798043

RESUMO

Xenotransplantation is a promising strategy to alleviate the shortage of organs for human transplantation. In addition to the concerns about pig-to-human immunological compatibility, the risk of cross-species transmission of porcine endogenous retroviruses (PERVs) has impeded the clinical application of this approach. We previously demonstrated the feasibility of inactivating PERV activity in an immortalized pig cell line. We now confirm that PERVs infect human cells, and we observe the horizontal transfer of PERVs among human cells. Using CRISPR-Cas9, we inactivated all of the PERVs in a porcine primary cell line and generated PERV-inactivated pigs via somatic cell nuclear transfer. Our study highlights the value of PERV inactivation to prevent cross-species viral transmission and demonstrates the successful production of PERV-inactivated animals to address the safety concern in clinical xenotransplantation.


Assuntos
Sistemas CRISPR-Cas , Transmissão de Doença Infecciosa/prevenção & controle , Retrovirus Endógenos/genética , Edição de Genes/métodos , Infecções por Retroviridae/transmissão , Sus scrofa/genética , Sus scrofa/virologia , Transplante Heterólogo/efeitos adversos , Animais , Células HEK293 , Humanos
15.
Nat Commun ; 7: 13330, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27804970

RESUMO

Precise editing is essential for biomedical research and gene therapy. Yet, homology-directed genome modification is limited by the requirements for genomic lesions, homology donors and the endogenous DNA repair machinery. Here we engineered programmable cytidine deaminases and test if we could introduce site-specific cytidine to thymidine transitions in the absence of targeted genomic lesions. Our programmable deaminases effectively convert specific cytidines to thymidines with 13% efficiency in Escherichia coli and 2.5% in human cells. However, off-target deaminations were detected more than 150 bp away from the target site. Moreover, whole genome sequencing revealed that edited bacterial cells did not harbour chromosomal abnormalities but demonstrated elevated global cytidine deamination at deaminase intrinsic binding sites. Therefore programmable deaminases represent a promising genome editing tool in prokaryotes and eukaryotes. Future engineering is required to overcome the processivity and the intrinsic DNA binding affinity of deaminases for safer therapeutic applications.


Assuntos
Citidina Desaminase/genética , Edição de Genes , Engenharia Genética , Proteínas Recombinantes de Fusão/genética , Sequência de Bases , Desaminação , Escherichia coli/metabolismo , Genoma Humano , Células HEK293 , Humanos , Especificidade por Substrato
16.
DNA Repair (Amst) ; 15: 39-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24461734

RESUMO

Classic non-homologous end-joining (C-NHEJ) is required for the repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian cells and plays a critical role in lymphoid V(D)J recombination. A core C-NHEJ component is the DNA ligase IV co-factor, Cernunnos/XLF (hereafter XLF). In patients, mutations in XLF cause predicted increases in radiosensitivity and deficits in immune function, but also cause other less well-understood pathologies including neural disorders. To characterize XLF function(s) in a defined genetic system, we used a recombinant adeno-associated virus-mediated gene targeting strategy to inactivate both copies of the XLF locus in the human HCT116 cell line. Analyses of XLF-null cells (which were viable) showed that they were highly sensitive to ionizing radiation and a radiomimetic DNA damaging agent, etoposide. XLF-null cells had profound DNA DSB repair defects as measured by in vivo plasmid end-joining assays and were also dramatically impaired in their ability to form either V(D)J coding or signal joints on extrachromosomal substrates. Thus, our somatic XLF-null cell line recapitulates many of the phenotypes expected from XLF patient cell lines. Subsequent structure:function experiments utilizing the expression of wild-type and mutant XLF cDNAs demonstrated that all of the phenotypes of an XLF deficiency could be rescued by the overexpression of a wild-type XLF cDNA. Unexpectedly, mutant forms of XLF bearing point mutations at amino acid positions L115 and L179, also completely complemented the null phenotype suggesting, in contrast to predictions to the contrary, that these mutations do not abrogate XLF function. Finally, we demonstrate that the absence of XLF causes a small, but significant, increase in homologous recombination, implicating XLF in DSB pathway choice regulation. We conclude that human XLF is a non-essential, but critical, C-NHEJ-repair factor.


Assuntos
Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Recombinação Homóloga , Sobrevivência Celular , Genoma Humano , Células HCT116 , Humanos , Transporte Proteico , Recombinação V(D)J
17.
Curr Biol ; 21(7): 586-91, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21458267

RESUMO

Flagella and cilia are structurally polarized organelles whose lengths are precisely defined, and alterations in length are related to several human disorders. Intraflagellar transport (IFT) and protein signaling molecules are implicated in specifying flagellar and ciliary length, but evidence has been lacking for a flagellum and cilium length sensor that could participate in active length control or establishment of structural polarity. Previously, we showed that the phosphorylation state of the aurora-like protein kinase CALK in Chlamydomonas is a marker of the absence of flagella. Here we show that CALK phosphorylation state is also a marker for flagellar length. CALK is phosphorylated in cells without flagella, and during flagellar assembly it becomes dephosphorylated. Dephosphorylation is not simply a consequence of initiation of flagellar assembly or of time after experimentally induced flagellar loss, but instead requires flagella to be assembled to a threshold length. Analysis of cells with flagella of varying lengths shows that the threshold length for CALK dephosphorylation is ~6 µm (half length). Studies with short and long flagellar mutants indicate that cells detect absolute rather than relative flagellar length. Our results demonstrate that cells possess a mechanism for translating flagellar length into a posttranslational modification of a known flagellar regulatory protein.


Assuntos
Chlamydomonas/crescimento & desenvolvimento , Chlamydomonas/metabolismo , Flagelos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinases , Padronização Corporal , Chlamydomonas/química , Chlamydomonas/ultraestrutura , Flagelos/química , Flagelos/metabolismo , Immunoblotting , Fosforilação , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA