Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 66(5): 658-671.e8, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575661

RESUMO

The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain, or phosphorylation site causes excessive binding of RAD51 to CFS loci and impairs CFS expression. This leads to defective chromosome segregation and accumulation of CFS-associated DNA damage in G1 cells. Biochemically, RECQ5 alleviates the inhibitory effect of RAD51 on 3'-flap DNA cleavage by MUS81-EME1 through its RAD51 filament disruption activity. These data suggest that RECQ5 removes RAD51 filaments stabilizing stalled replication forks at CFSs and hence facilitates CFS cleavage by MUS81-EME1.


Assuntos
Sítios Frágeis do Cromossomo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/biossíntese , Endonucleases/metabolismo , Mitose , RecQ Helicases/metabolismo , Origem de Replicação , Sítios de Ligação , Proteína Quinase CDC2 , Instabilidade Cromossômica , Segregação de Cromossomos , Quinases Ciclina-Dependentes/metabolismo , DNA/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Células HEK293 , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Interferência de RNA , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , Fatores de Tempo , Transfecção
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042798

RESUMO

Mutations in the SETX gene, which encodes Senataxin, are associated with the progressive neurodegenerative diseases ataxia with oculomotor apraxia 2 (AOA2) and amyotrophic lateral sclerosis 4 (ALS4). To identify the causal defect in AOA2, patient-derived cells and SETX knockouts (human and mouse) were analyzed using integrated genomic and transcriptomic approaches. A genome-wide increase in chromosome instability (gains and losses) within genes and at chromosome fragile sites was observed, resulting in changes to gene-expression profiles. Transcription stress near promoters correlated with high GCskew and the accumulation of R-loops at promoter-proximal regions, which localized with chromosomal regions where gains and losses were observed. In the absence of Senataxin, the Cockayne syndrome protein CSB was required for the recruitment of the transcription-coupled repair endonucleases (XPG and XPF) and RAD52 recombination protein to target and resolve transcription bubbles containing R-loops, leading to genomic instability. These results show that transcription stress is an important contributor to SETX mutation-associated chromosome fragility and AOA2.


Assuntos
Instabilidade Cromossômica/genética , DNA Helicases/metabolismo , Enzimas Multifuncionais/metabolismo , RNA Helicases/metabolismo , Ataxias Espinocerebelares/congênito , Animais , Apraxias/genética , Ataxia/genética , Linhagem Celular , Ataxia Cerebelar/genética , DNA Helicases/genética , Reparo do DNA/genética , Perfilação da Expressão Gênica/métodos , Instabilidade Genômica/genética , Genômica/métodos , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Enzimas Multifuncionais/genética , Mutação/genética , Doenças Neurodegenerativas/genética , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , RNA Helicases/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Transcriptoma/genética
3.
Hum Mol Genet ; 31(17): 2899-2917, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394024

RESUMO

Cellular proliferation depends on the accurate and timely replication of the genome. Several genetic diseases are caused by mutations in key DNA replication genes; however, it remains unclear whether these genes influence the normal program of DNA replication timing. Similarly, the factors that regulate DNA replication dynamics are poorly understood. To systematically identify trans-acting modulators of replication timing, we profiled replication in 184 cell lines from three cell types, encompassing 60 different gene knockouts or genetic diseases. Through a rigorous approach that considers the background variability of replication timing, we concluded that most samples displayed normal replication timing. However, mutations in two genes showed consistently abnormal replication timing. The first gene was RIF1, a known modulator of replication timing. The second was MCM10, a highly conserved member of the pre-replication complex. Cells from a single patient carrying MCM10 mutations demonstrated replication timing variability comprising 46% of the genome and at different locations than RIF1 knockouts. Replication timing alterations in the mutated MCM10 cells were predominantly comprised of replication delays and initiation site gains and losses. Taken together, this study demonstrates the remarkable robustness of the human replication timing program and reveals MCM10 as a novel candidate modulator of DNA replication timing.


Assuntos
Período de Replicação do DNA , Proteínas de Manutenção de Minicromossomo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Replicação do DNA/genética , Período de Replicação do DNA/genética , Humanos , Proteínas de Manutenção de Minicromossomo/genética , Origem de Replicação
4.
Nucleic Acids Res ; 50(21): 12274-12290, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453994

RESUMO

R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and displaced DNA strand. These structures can halt DNA replication when formed co-transcriptionally in the opposite orientation to replication fork progression. A recent study has shown that replication forks stalled by co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage by MUS81 endonuclease, followed by ELL-dependent reactivation of transcription, and fork religation by the DNA ligase IV (LIG4)/XRCC4 complex. However, how R-loops are eliminated to allow the sequential restart of transcription and replication in this pathway remains elusive. Here, we identified the human DDX17 helicase as a factor that associates with R-loops and counteracts R-loop-mediated replication stress to preserve genome stability. We show that DDX17 unwinds R-loops in vitro and promotes MUS81-dependent restart of R-loop-stalled forks in human cells in a manner dependent on its helicase activity. Loss of DDX17 helicase induces accumulation of R-loops and the formation of R-loop-dependent anaphase bridges and micronuclei. These findings establish DDX17 as a component of the MUS81-LIG4-ELL pathway for resolution of R-loop-mediated transcription-replication conflicts, which may be involved in R-loop unwinding.


Assuntos
Replicação do DNA , Estruturas R-Loop , Humanos , Replicação do DNA/genética , DNA Helicases/metabolismo , Endonucleases/metabolismo , DNA/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
5.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298567

RESUMO

RNA-binding proteins (RBPs) represent a large family of proteins with an extensive array of roles that contribute to coordinating and directing multiple functions in RNA metabolism and transcription [...].


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008519

RESUMO

Genome integrity must be tightly preserved to ensure cellular survival and to deter the genesis of disease. Endogenous and exogenous stressors that impose threats to genomic stability through DNA damage are counteracted by a tightly regulated DNA damage response (DDR). RNA binding proteins (RBPs) are emerging as regulators and mediators of diverse biological processes. Specifically, RBPs that bind to adenine uridine (AU)-rich elements (AREs) in the 3' untranslated region (UTR) of mRNAs (AU-RBPs) have emerged as key players in regulating the DDR and preserving genome integrity. Here we review eight established AU-RBPs (AUF1, HuR, KHSRP, TIA-1, TIAR, ZFP36, ZFP36L1, ZFP36L2) and their ability to maintain genome integrity through various interactions. We have reviewed canonical roles of AU-RBPs in regulating the fate of mRNA transcripts encoding DDR genes at multiple post-transcriptional levels. We have also attempted to shed light on non-canonical roles of AU-RBPs exploring their post-translational modifications (PTMs) and sub-cellular localization in response to genotoxic stresses by various factors involved in DDR and genome maintenance. Dysfunctional AU-RBPs have been increasingly found to be associated with many human cancers. Further understanding of the roles of AU-RBPS in maintaining genomic integrity may uncover novel therapeutic strategies for cancer.


Assuntos
Adenina/metabolismo , Genoma/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/genética , Uridina/genética , Regiões 3' não Traduzidas/genética , Animais , Humanos
7.
Nucleic Acids Res ; 42(4): 2380-90, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24319145

RESUMO

Most mitotic homologous recombination (HR) events proceed via a synthesis-dependent strand annealing mechanism to avoid crossing over, which may give rise to chromosomal rearrangements and loss of heterozygosity. The molecular mechanisms controlling HR sub-pathway choice are poorly understood. Here, we show that human RECQ5, a DNA helicase that can disrupt RAD51 nucleoprotein filaments, promotes formation of non-crossover products during DNA double-strand break-induced HR and counteracts the inhibitory effect of RAD51 on RAD52-mediated DNA annealing in vitro and in vivo. Moreover, we demonstrate that RECQ5 deficiency is associated with an increased occupancy of RAD51 at a double-strand break site, and it also causes an elevation of sister chromatid exchanges on inactivation of the Holliday junction dissolution pathway or on induction of a high load of DNA damage in the cell. Collectively, our findings suggest that RECQ5 acts during the post-synaptic phase of synthesis-dependent strand annealing to prevent formation of aberrant RAD51 filaments on the extended invading strand, thus limiting its channeling into potentially hazardous crossover pathway of HR.


Assuntos
Quebras de DNA de Cadeia Dupla , RecQ Helicases/metabolismo , Reparo de DNA por Recombinação , Linhagem Celular , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Humanos , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Troca de Cromátide Irmã
8.
J Biol Chem ; 289(39): 27314-27326, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25122754

RESUMO

The 5'-3' resection of DNA ends is a prerequisite for the repair of DNA double strand breaks by homologous recombination, microhomology-mediated end joining, and single strand annealing. Recent studies in yeast have shown that, following initial DNA end processing by the Mre11-Rad50-Xrs2 complex and Sae2, the extension of resection tracts is mediated either by exonuclease 1 or by combined activities of the RecQ family DNA helicase Sgs1 and the helicase/endonuclease Dna2. Although human DNA2 has been shown to cooperate with the BLM helicase to catalyze the resection of DNA ends, it remains a matter of debate whether another human RecQ helicase, WRN, can substitute for BLM in DNA2-catalyzed resection. Here we present evidence that WRN and BLM act epistatically with DNA2 to promote the long-range resection of double strand break ends in human cells. Our biochemical experiments show that WRN and DNA2 interact physically and coordinate their enzymatic activities to mediate 5'-3' DNA end resection in a reaction dependent on RPA. In addition, we present in vitro and in vivo data suggesting that BLM promotes DNA end resection as part of the BLM-TOPOIIIα-RMI1-RMI2 complex. Our study provides new mechanistic insights into the process of DNA end resection in mammalian cells.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , DNA/metabolismo , Epistasia Genética/fisiologia , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Hidrolases Anidrido Ácido , DNA/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Proteína Homóloga a MRE11 , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , RecQ Helicases/genética , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Helicase da Síndrome de Werner
9.
Nucleic Acids Res ; 40(17): 8449-59, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22753033

RESUMO

Reactive oxygen species constantly generated as by-products of cellular metabolism readily attack genomic DNA creating mutagenic lesions such as 7,8-dihydro-8-oxo-guanine (8-oxo-G) that promote aging. 8-oxo-G:A mispairs arising during DNA replication are eliminated by base excision repair initiated by the MutY DNA glycosylase homologue (MUTYH). Here, by using formaldehyde crosslinking in mammalian cell extracts, we demonstrate that the WRN helicase/exonuclease defective in the premature aging disorder Werner syndrome (WS) is recruited to DNA duplex containing an 8-oxo-G:A mispair in a manner dependent on DNA polymerase λ (Polλ) that catalyzes accurate DNA synthesis over 8-oxo-G. Similarly, by immunofluorescence, we show that Polλ is required for accumulation of WRN at sites of 8-oxo-G lesions in human cells. Moreover, we show that nuclear focus formation of WRN and Polλ induced by oxidative stress is dependent on ongoing DNA replication and on the presence of MUTYH. Cell viability assays reveal that depletion of MUTYH suppresses the hypersensitivity of cells lacking WRN and/or Polλ to oxidative stress. Biochemical studies demonstrate that WRN binds to the catalytic domain of Polλ and specifically stimulates DNA gap filling by Polλ over 8-oxo-G followed by strand displacement synthesis. Our results suggest that WRN promotes long-patch DNA repair synthesis by Polλ during MUTYH-initiated repair of 8-oxo-G:A mispairs.


Assuntos
Pareamento Incorreto de Bases , DNA Glicosilases/metabolismo , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Estresse Oxidativo , RecQ Helicases/metabolismo , Animais , Linhagem Celular , DNA/metabolismo , Dano ao DNA , DNA Polimerase beta/metabolismo , Replicação do DNA , Exodesoxirribonucleases/fisiologia , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Camundongos , RecQ Helicases/fisiologia , Fase S/genética , Helicase da Síndrome de Werner
10.
EMBO J ; 28(4): 405-16, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19165145

RESUMO

Bloom syndrome (BS) is a rare genetic disorder characterized by genomic instability and a high predisposition to cancer. The gene defective in BS, BLM, encodes a member of the RecQ family of 3'-5' DNA helicases, and is proposed to function in recombinational repair during DNA replication. Here, we have utilized single-molecule fluorescence resonance energy transfer microscopy to examine the behaviour of BLM on forked DNA substrates. Strikingly, BLM unwound individual DNA molecules in a repetitive manner, unwinding a short length of duplex DNA followed by rapid reannealing and reinitiation of unwinding in several successions. Our results show that a monomeric BLM can 'measure' how many base pairs it has unwound, and once it has unwound a critical length, it reverses the unwinding reaction through strand switching and translocating on the opposing strand. Repetitive unwinding persisted even in the presence of hRPA, and interaction between wild-type BLM and hRPA was necessary for unwinding reinitiation on hRPA-coated DNA. The reported activities may facilitate BLM processing of stalled replication forks and illegitimately formed recombination intermediates.


Assuntos
DNA/metabolismo , RecQ Helicases/metabolismo , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , DNA/química , DNA Helicases/química , DNA Helicases/genética , Reparo do DNA , Replicação do DNA , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Ligação Proteica
11.
Cell Rep ; 42(2): 112062, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36729836

RESUMO

Our genomes harbor conserved DNA sequences, known as common fragile sites (CFSs), that are difficult to replicate and correspond to regions of genome instability. Following replication stress, CFS loci give rise to breaks or gaps (termed CFS expression) where under-replicated DNA subsequently undergoes mitotic DNA synthesis (MiDAS). We show that loss of the structure-selective endonuclease GEN1 reduces CFS expression, leading to defects in MiDAS, ultrafine anaphase bridge formation, and DNA damage in the ensuing cell cycle due to aberrant chromosome segregation. GEN1 knockout cells also exhibit an elevated frequency of bichromatid constrictions consistent with the presence of unresolved regions of under-replicated DNA. Previously, the role of GEN1 was thought to be restricted to the nucleolytic resolution of recombination intermediates. However, its ability to cleave under-replicated DNA at CFS loci indicates that GEN1 plays a dual role resolving both DNA replication and recombination intermediates before chromosome segregation.


Assuntos
Replicação do DNA , DNA , Humanos , Sítios Frágeis do Cromossomo/genética , Replicação do DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Instabilidade Genômica
12.
Comput Methods Programs Biomed ; 232: 107447, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889248

RESUMO

The cytokinesis block micronucleus assay is widely used for measuring/scoring/counting micronuclei, a marker of genome instability in cultured and primary cells. Though a gold standard method, this is a laborious and time-consuming process with person-to-person variation observed in quantification of micronuclei. We report in this study the utilisation of a new deep learning workflow for detection of micronuclei in DAPI stained nuclear images. The proposed deep learning framework achieved an average precision of >90% in detection of micronuclei. This proof of principle investigation in a DNA damage studies laboratory supports the idea of deploying AI powered tools in a cost-effective manner for repetitive and laborious tasks with relevant computational expertise. These systems will also help improving the quality of data and wellbeing of researchers.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Fluxo de Trabalho , Testes para Micronúcleos/métodos , Dano ao DNA , Linhagem Celular
13.
Nat Commun ; 14(1): 1791, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997515

RESUMO

Elevated levels of reactive oxygen species (ROS) reduce replication fork velocity by causing dissociation of the TIMELESS-TIPIN complex from the replisome. Here, we show that ROS generated by exposure of human cells to the ribonucleotide reductase inhibitor hydroxyurea (HU) promote replication fork reversal in a manner dependent on active transcription and formation of co-transcriptional RNA:DNA hybrids (R-loops). The frequency of R-loop-dependent fork stalling events is also increased after TIMELESS depletion or a partial inhibition of replicative DNA polymerases by aphidicolin, suggesting that this phenomenon is due to a global replication slowdown. In contrast, replication arrest caused by HU-induced depletion of deoxynucleotides does not induce fork reversal but, if allowed to persist, leads to extensive R-loop-independent DNA breakage during S-phase. Our work reveals a link between oxidative stress and transcription-replication interference that causes genomic alterations recurrently found in human cancer.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Humanos , Espécies Reativas de Oxigênio , Fase S/genética , Proteínas de Ligação a DNA/metabolismo , Hidroxiureia/farmacologia , DNA
14.
Nucleic Acids Res ; 38(22): 8131-40, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20705653

RESUMO

It is known that transcription can induce DNA recombination, thus compromising genomic stability. RECQ5 DNA helicase promotes genomic stability by regulating homologous recombination. Recent studies have shown that RECQ5 forms a stable complex with RNA polymerase II (RNAPII) in human cells, but the cellular role of this association is not understood. Here, we provide evidence that RECQ5 specifically binds to the Ser2,5-phosphorylated C-terminal repeat domain (CTD) of the largest subunit of RNAPII, RPB1, by means of a Set2-Rpb1-interacting (SRI) motif located at the C-terminus of RECQ5. We also show that RECQ5 associates with RNAPII-transcribed genes in a manner dependent on the SRI motif. Notably, RECQ5 density on transcribed genes correlates with the density of Ser2-CTD phosphorylation, which is associated with the productive elongation phase of transcription. Furthermore, we show that RECQ5 negatively affects cell viability upon inhibition of spliceosome assembly, which can lead to the formation of mutagenic R-loop structures. These data indicate that RECQ5 binds to the elongating RNAPII complex and support the idea that RECQ5 plays a role in the maintenance of genomic stability during transcription.


Assuntos
RNA Polimerase II/metabolismo , RecQ Helicases/metabolismo , Transcrição Gênica , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular , Sequência Conservada , Humanos , Dados de Sequência Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , RNA Polimerase II/química , RecQ Helicases/química , Sequências Repetitivas de Aminoácidos , Spliceossomos/metabolismo
15.
J Biol Chem ; 285(21): 15739-45, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20348101

RESUMO

Homologous recombination (HR) provides an efficient mechanism for error-free repair of DNA double-strand breaks (DSBs). However, HR can be also harmful as inappropriate or untimely HR events can give rise to lethal recombination intermediates and chromosome rearrangements. A critical step of HR is the formation of a RAD51 filament on single-stranded (ss)DNA, which mediates the invasion of a homologous DNA molecule. In mammalian cells, several DNA helicases have been implicated in the regulation of this process. RECQ5, a member of the RecQ family of DNA helicases, interacts physically with the RAD51 recombinase and disrupts RAD51 presynaptic filaments in a reaction dependent on ATP hydrolysis. Here, we have precisely mapped the RAD51-interacting domain of RECQ5 and generated mutants that fail to interact with RAD51. We show that although these mutants retain normal ATPase activity, they are impaired in their ability to displace RAD51 from ssDNA. Moreover, we show that ablation of RECQ5-RAD51 complex formation by a point mutation alleviates the inhibitory effect of RECQ5 on HR-mediated DSB repair. These findings provide support for the proposal that interaction with RAD51 is critical for the anti-recombinase attribute of RECQ5.


Assuntos
Pareamento Cromossômico/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Rad51 Recombinase/metabolismo , RecQ Helicases/metabolismo , Recombinação Genética/fisiologia , Linhagem Celular , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Rad51 Recombinase/genética , RecQ Helicases/genética
16.
Nucleic Acids Res ; 37(8): 2645-57, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19270065

RESUMO

RECQ5 DNA helicase suppresses homologous recombination (HR) possibly through disruption of RAD51 filaments. Here, we show that RECQ5 is constitutively associated with the MRE11-RAD50-NBS1 (MRN) complex, a primary sensor of DNA double-strand breaks (DSBs) that promotes DSB repair and regulates DNA damage signaling via activation of the ATM kinase. Experiments with purified proteins indicated that RECQ5 interacts with the MRN complex through both MRE11 and NBS1. Functional assays revealed that RECQ5 specifically inhibited the 3'-->5' exonuclease activity of MRE11, while MRN had no effect on the helicase activity of RECQ5. At the cellular level, we observed that the MRN complex was required for the recruitment of RECQ5 to sites of DNA damage. Accumulation of RECQ5 at DSBs was neither dependent on MDC1 that mediates binding of MRN to DSB-flanking chromatin nor on CtIP that acts in conjunction with MRN to promote resection of DSBs for repair by HR. Collectively, these data suggest that the MRN complex recruits RECQ5 to sites of DNA damage to regulate DNA repair.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , RecQ Helicases/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Proteínas de Ligação a DNA/análise , Exodesoxirribonucleases/metabolismo , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/metabolismo , RecQ Helicases/análise
17.
Biochem J ; 412(3): 425-33, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18290761

RESUMO

RecQ family helicases, functioning as caretakers of genomic integrity, contain a zinc-binding motif which is highly conserved among these helicases, but does not have a substantial structural similarity with any other known zinc-finger folds. In the present study, we show that a truncated variant of the human RECQ5beta helicase comprised of the conserved helicase domain only, a splice variant named RECQ5alpha, possesses neither ATPase nor DNA-unwinding activities, but surprisingly displays a strong strand-annealing activity. In contrast, fragments of RECQ5beta including the intact zinc-binding motif, which is located immediately downstream of the helicase domain, exhibit much reduced strand-annealing activity but are proficient in DNA unwinding. Quantitative measurements indicate that the regulatory role of the zinc-binding motif is achieved by enhancing the DNA-binding affinity of the enzyme. The novel intramolecular modulation of RECQ5beta catalytic activity mediated by the zinc-binding motif may represent a universal regulation mode for all RecQ family helicases.


Assuntos
RecQ Helicases/química , RecQ Helicases/metabolismo , Dedos de Zinco , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , DNA de Cadeia Simples/metabolismo , Variação Genética , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , RecQ Helicases/genética
18.
Nucleic Acids Res ; 35(17): 5706-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17715146

RESUMO

Werner syndrome (WS) is a severe recessive disorder characterized by premature aging, cancer predisposition and genomic instability. The gene mutated in WS encodes a bi-functional enzyme called WRN that acts as a RecQ-type DNA helicase and a 3'-5' exonuclease, but its exact role in DNA metabolism is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSalpha), MSH2/MSH3 (MutSbeta) and MLH1/PMS2 (MutLalpha) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSalpha and MutSbeta can strongly stimulate the helicase activity of WRN specifically on forked DNA structures with a 3'-single-stranded arm. The stimulatory effect of MutSalpha on WRN-mediated unwinding is enhanced by a G/T mismatch in the DNA duplex ahead of the fork. The MutLalpha protein known to bind to the MutS alpha-heteroduplex complexes has no effect on WRN-mediated DNA unwinding stimulated by MutSalpha, nor does it affect DNA unwinding by WRN alone. Our data are consistent with results of genetic experiments in yeast suggesting that MMR factors act in conjunction with a RecQ-type helicase to reject recombination between divergent sequences.


Assuntos
Pareamento Incorreto de Bases , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , RecQ Helicases/metabolismo , Sítios de Ligação , Linhagem Celular , DNA/química , DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases , Humanos , Proteínas MutL , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS , Estrutura Terciária de Proteína , RecQ Helicases/química , Técnicas do Sistema de Duplo-Híbrido , Helicase da Síndrome de Werner
19.
Nucleic Acids Res ; 34(18): 5217-31, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17003056

RESUMO

The role of the human RECQ5beta helicase in the maintenance of genomic stability remains elusive. Here we show that RECQ5beta promotes strand exchange between arms of synthetic forked DNA structures resembling a stalled replication fork in a reaction dependent on ATP hydrolysis. BLM and WRN can also promote strand exchange on these structures. However, in the presence of human replication protein A (hRPA), the action of these RecQ-type helicases is strongly biased towards unwinding of the parental duplex, an effect not seen with RECQ5beta. A domain within the non-conserved portion of RECQ5beta is identified as being important for its ability to unwind the lagging-strand arm and to promote strand exchange on hRPA-coated forked structures. We also show that RECQ5beta associates with DNA replication factories in S phase nuclei and persists at the sites of stalled replication forks after exposure of cells to UV irradiation. Moreover, RECQ5beta is found to physically interact with the polymerase processivity factor proliferating cell nuclear antigen in vitro and in vivo. Collectively, these findings suggest that RECQ5beta may promote regression of stalled replication forks to facilitate the bypass of replication-blocking lesions by template-switching. Loss of such activity could explain the elevated level of mitotic crossovers observed in RECQ5beta-deficient cells.


Assuntos
Replicação do DNA , DNA/química , RecQ Helicases/metabolismo , Adenosina Trifosfatases/metabolismo , Linhagem Celular , Dano ao DNA , DNA Helicases/metabolismo , Células HeLa , Humanos , Oligonucleotídeos/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Terciária de Proteína , RecQ Helicases/química , Proteína de Replicação A/metabolismo , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA