Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cell ; 184(20): 5247-5260.e19, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34534445

RESUMO

3' untranslated region (3'UTR) variants are strongly associated with human traits and diseases, yet few have been causally identified. We developed the massively parallel reporter assay for 3'UTRs (MPRAu) to sensitively assay 12,173 3'UTR variants. We applied MPRAu to six human cell lines, focusing on genetic variants associated with genome-wide association studies (GWAS) and human evolutionary adaptation. MPRAu expands our understanding of 3'UTR function, suggesting that simple sequences predominately explain 3'UTR regulatory activity. We adapt MPRAu to uncover diverse molecular mechanisms at base pair resolution, including an adenylate-uridylate (AU)-rich element of LEPR linked to potential metabolic evolutionary adaptations in East Asians. We nominate hundreds of 3'UTR causal variants with genetically fine-mapped phenotype associations. Using endogenous allelic replacements, we characterize one variant that disrupts a miRNA site regulating the viral defense gene TRIM14 and one that alters PILRB abundance, nominating a causal variant underlying transcriptional changes in age-related macular degeneration.


Assuntos
Regiões 3' não Traduzidas/genética , Evolução Biológica , Doença/genética , Estudo de Associação Genômica Ampla , Algoritmos , Alelos , Regulação da Expressão Gênica , Genes Reporter , Variação Genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Polirribossomos/metabolismo , Locos de Características Quantitativas/genética , RNA/genética
2.
Nature ; 625(7993): 92-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057664

RESUMO

The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely used to investigate protein-coding genes underlying human disorders1-4, but attempts to assess constraint for non-protein-coding regions have proved more difficult. Here we aggregate, process and release a dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD)-the largest public open-access human genome allele frequency reference dataset-and use it to build a genomic constraint map for the whole genome (genomic non-coding constraint of haploinsufficient variation (Gnocchi)). We present a refined mutational model that incorporates local sequence context and regional genomic features to detect depletions of variation. As expected, the average constraint for protein-coding sequences is stronger than that for non-coding regions. Within the non-coding genome, constrained regions are enriched for known regulatory elements and variants that are implicated in complex human diseases and traits, facilitating the triangulation of biological annotation, disease association and natural selection to non-coding DNA analysis. More constrained regulatory elements tend to regulate more constrained protein-coding genes, which in turn suggests that non-coding constraint can aid the identification of constrained genes that are as yet unrecognized by current gene constraint metrics. We demonstrate that this genome-wide constraint map improves the identification and interpretation of functional human genetic variation.


Assuntos
Genoma Humano , Genômica , Modelos Genéticos , Mutação , Humanos , Acesso à Informação , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Frequência do Gene , Genoma Humano/genética , Mutação/genética , Seleção Genética
3.
Nature ; 620(7975): 839-848, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587338

RESUMO

Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation1. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching2,3. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.


Assuntos
Núcleo Celular , Variações do Número de Cópias de DNA , DNA Mitocondrial , Heteroplasmia , Mitocôndrias , Idoso , Humanos , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Estudo de Associação Genômica Ampla , Heteroplasmia/genética , Mitocôndrias/genética , Núcleo Celular/genética , Alelos , Polimorfismo de Nucleotídeo Único , Mutação INDEL , Quadruplex G
4.
Nature ; 613(7944): 508-518, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653562

RESUMO

Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10-11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.


Assuntos
Doença , Frequência do Gene , Fenótipo , Humanos , Pessoa de Meia-Idade , Doença/genética , Estônia , Finlândia , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Metanálise como Assunto , Reino Unido , População Branca/genética
5.
Nature ; 609(7928): 754-760, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940203

RESUMO

Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1-5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.


Assuntos
COVID-19 , Proteínas Ativadoras de GTPase , Estudo de Associação Genômica Ampla , Fatores de Troca do Nucleotídeo Guanina , Interações entre Hospedeiro e Microrganismos , SARS-CoV-2 , Alelos , Animais , COVID-19/complicações , COVID-19/genética , COVID-19/imunologia , COVID-19/fisiopatologia , Modelos Animais de Doenças , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Predisposição Genética para Doença , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Japão , Pulmão/patologia , Macrófagos , Mesocricetus , Pessoa de Meia-Idade , Pneumonia/complicações , Pirazóis/farmacologia , RNA-Seq , SARS-CoV-2/patogenicidade , Carga Viral , Redução de Peso
6.
Nature ; 600(7890): 675-679, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887591

RESUMO

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Doenças Cardiovasculares/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação , Herança Multifatorial , Polimorfismo de Nucleotídeo Único/genética , Grupos Populacionais
7.
PLoS Genet ; 19(9): e1010932, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37721944

RESUMO

The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Genótipo , Sequência de Bases , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
8.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931049

RESUMO

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Cromatina/genética , Genômica , Humanos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
13.
Ann Rheum Dis ; 79(10): 1305-1309, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32737115

RESUMO

OBJECTIVES: The genetic background of rheumatoid arthritis-interstitial lung disease (RA-ILD) has been evaluated in Europeans, but little knowledge has been obtained in non-Europeans. This study aimed to elucidate genome-wide risk of RA-ILD in non-Europeans. METHODS: We performed an initial genome-wide association study (GWAS) of RA-ILD in the Japanese population. By conducting the meta-analysis of the three GWAS datasets of the RA cohorts and biobank of Japanese, our study included 358 RA-ILD cases and 4550 RA subjects without ILD. We then conducted the stratified analysis of the effect of the GWAS risk allele in each CT image pattern. RESULTS: We identified one novel RA-ILD risk locus at 7p21 that satisfied the genome-wide significance threshold (rs12702634 at RPA3-UMAD1, OR=2.04, 95% CI 1.59 to 2.60, p=1.5×10-8). Subsequent stratified analysis based on the CT image patterns demonstrated that the effect size of the RA-ILD risk allele (rs12702634-C) was large with the UIP pattern (OR=1.86, 95% CI 0.97 to 3.58, p=0.062) and the probable UIP pattern (OR=2.26, 95% CI 1.36 to 3.73, p=0.0015). CONCLUSION: We revealed one novel genetic association with RA-ILD in Japanese. The RA-ILD risk of the identified variant at RPA3-UMAD1 was relatively high in the CT image patterns related to fibrosis. Our study should contribute to elucidation of the complicated aetiology of RA-ILD.


Assuntos
Artrite Reumatoide/genética , Proteínas de Ligação a DNA/genética , Doenças Pulmonares Intersticiais/genética , Artrite Reumatoide/complicações , Povo Asiático/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Doenças Pulmonares Intersticiais/complicações , RNA Antissenso/genética
14.
Brain ; 142(11): 3473-3481, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608925

RESUMO

Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60×10-15; Cleveland: P = 1.39×10-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment.


Assuntos
Epilepsias Parciais/genética , Epilepsia Generalizada/genética , Herança Multifatorial/genética , Estudos de Coortes , Efeitos Psicossociais da Doença , Bases de Dados Factuais , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , População Branca
15.
Am J Hum Genet ; 99(2): 366-74, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27486778

RESUMO

Despite the progress in human leukocyte antigen (HLA) causal variant mapping, independent localization of major histocompatibility complex (MHC) risk from classical HLA genes is challenging. Here, we conducted a large-scale MHC fine-mapping analysis of rheumatoid arthritis (RA) in a Japanese population (6,244 RA cases and 23,731 controls) population by using HLA imputation, followed by a multi-ethnic validation study including east Asian and European populations (n = 7,097 and 23,149, respectively). Our study identified an independent risk of a synonymous mutation at HLA-DOA, a non-classical HLA gene, on anti-citrullinated protein autoantibody (ACPA)-positive RA risk (p = 1.4 × 10(-9)), which demonstrated a cis-expression quantitative trait loci (cis-eQTL) effect on HLA-DOA expression. Trans-ethnic comparison revealed different linkage disequilibrium (LD) patterns in HLA-DOA and HLA-DRB1, explaining the observed HLA-DOA variant risk heterogeneity among ethnicities, which was most evident in the Japanese population. Although previous HLA fine-mapping studies have identified amino acid polymorphisms of the classical HLA genes as driving genetic susceptibility to disease, our study additionally identifies the dosage contribution of a non-classical HLA gene to disease etiology. Our study contributes to the understanding of HLA immunology in human diseases and suggests the value of incorporating additional ancestry in MHC fine-mapping.


Assuntos
Artrite Reumatoide/genética , Povo Asiático/genética , Predisposição Genética para Doença , Antígenos HLA-D/genética , Autoanticorpos , Citrulina , Etnicidade/genética , Europa (Continente)/etnologia , Estudo de Associação Genômica Ampla , Cadeias HLA-DRB1/genética , Humanos , Japão/etnologia , Desequilíbrio de Ligação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética
16.
Bioinformatics ; 34(22): 3934-3936, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29931190

RESUMO

Summary: Rapid advances in high-throughput sequencing technologies have enabled more efficient acquisition of massive amount of multi-omics data. However, interpretation of the underlying relationships across multi-omics networks has not been fully succeeded, partly due to the lack of effective methods in visualization. To aid interpretation of the results from such multi-omics data, we here present Grimon (Graphical interface to visualize multi-omics networks), an R package that visualizes high-dimensional multi-layered data sets in three-dimensional parallel coordinates. Grimon enables users to intuitively and interactively explore their analyzed data, helping their understanding of multiple inter-layer connections embedded in high-dimensional complex data. Availability and implementation: Grimon is freely available at https://github.com/mkanai/grimon as an R package with example omics data sets. Supplementary information: Supplementary data are available at bioinformatics online.


Assuntos
Metagenoma , Software , Transcriptoma , Fenótipo , Análise de Sequência de RNA
17.
J Hum Genet ; 61(10): 861-866, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27305981

RESUMO

To assess the statistical significance of associations between variants and traits, genome-wide association studies (GWAS) should employ an appropriate threshold that accounts for the massive burden of multiple testing in the study. Although most studies in the current literature commonly set a genome-wide significance threshold at the level of P=5.0 × 10-8, the adequacy of this value for respective populations has not been fully investigated. To empirically estimate thresholds for different ancestral populations, we conducted GWAS simulations using the 1000 Genomes Phase 3 data set for Africans (AFR), Europeans (EUR), Admixed Americans (AMR), East Asians (EAS) and South Asians (SAS). The estimated empirical genome-wide significance thresholds were Psig=3.24 × 10-8 (AFR), 9.26 × 10-8 (EUR), 1.83 × 10-7 (AMR), 1.61 × 10-7 (EAS) and 9.46 × 10-8 (SAS). We additionally conducted trans-ethnic meta-analyses across all populations (ALL) and all populations except for AFR (ΔAFR), which yielded Psig=3.25 × 10-8 (ALL) and 4.20 × 10-8 (ΔAFR). Our results indicate that the current threshold (P=5.0 × 10-8) is overly stringent for all ancestral populations except for Africans; however, we should employ a more stringent threshold when conducting a meta-analysis, regardless of the presence of African samples.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Simulação por Computador , Conjuntos de Dados como Assunto , Etnicidade/genética , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Desequilíbrio de Ligação , Metanálise como Assunto , Modelos Genéticos
19.
J Neurol Neurosurg Psychiatry ; 86(5): 483-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25253871

RESUMO

BACKGROUND: In hereditary myopathy with early respiratory failure (HMERF), cytoplasmic bodies (CBs) are often localised in subsarcolemmal regions, with necklace-like alignment (necklace CBs), in muscle fibres although their sensitivity and specificity are unknown. OBJECTIVE: To elucidate the diagnostic value of the necklace CBs in the pathological diagnosis of HMERF among myofibrillar myopathies (MFMs). METHODS: We sequenced the exon 343 of TTN gene (based on ENST00000589042), which encodes the fibronectin-3 (FN3) 119 domain of the A-band and is a mutational hot spot for HMERF, in genomic DNA from 187 patients from 175 unrelated families who were pathologically diagnosed as MFM. We assessed the sensitivity and specificity of the necklace CBs for HMERF by re-evaluating the muscle pathology of our patients with MFM. RESULTS: TTN mutations were identified in 17 patients from 14 families, whose phenotypes were consistent with HMERF. Among them, 14 patients had necklace CBs. In contrast, none of other patients with MFM had necklace CBs except for one patient with reducing body myopathy. The sensitivity and specificity were 82% and 99%, respectively. Positive predictive value was 93% in the MFM cohort. CONCLUSIONS: The necklace CB is a useful diagnostic marker for HMERF. When muscle pathology shows necklace CBs, sequencing the FN3 119 domain of A-band in TTN should be considered.


Assuntos
Citoplasma/patologia , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/metabolismo , Proteínas Musculares/metabolismo , Doenças Musculares/diagnóstico , Doenças Musculares/metabolismo , Agregação Patológica de Proteínas/metabolismo , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Conectina/genética , Citoplasma/ultraestrutura , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação , Insuficiência Respiratória/genética , Insuficiência Respiratória/patologia , Sensibilidade e Especificidade
20.
Hinyokika Kiyo ; 60(2): 91-4, 2014 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-24755821

RESUMO

A 20-year-old unmarried Ghanaian man complaining of macroscopic hematuria and cystitis symptom was admitted to our institute. Abdominal ultrasound revealed a hyper echoic lesion in the entire bladder wall. Computed tomography showed a calcification of the whole bladder wall and of the left lower ureter. Flexible cystoscopy revealed many nodular masses, so-called 'bilharzial tubercles', at the trigone and posterior wall of the urinary bladder, and there was partial bleeding. Pathological examination revealed granuloma with many calcified eggs of schistosome haematobium. He was diagnosed with Bilharzial schistosomiasis and was treated with 1,500 mg of praziquantel for two days. However the therapeutic effect was insufficient. Therefore, he was treated with 2,400 mg of praziquantel for two days, and the symptoms disappeared.


Assuntos
Esquistossomose Urinária/diagnóstico , Adulto , Anti-Helmínticos/uso terapêutico , Gana/etnologia , Humanos , Masculino , Praziquantel/uso terapêutico , Esquistossomose Urinária/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA