Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
New Microbiol ; 46(4): 322-331, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252042

RESUMO

This meta-analysis aims to investigate demographic disparities in monkeypox (mpox) infections among various groups based on ethnicity, sexual partners, and gender. The study includes data from 2,646 to 4,002 patients across various outcomes. Among racial demographics, black populations show a lower odds ratio for mpox compared to white populations (OR=0.08 [0.01, 0.45], 95% CI, p=0.004). However, no statistically significant difference is found when comparing black populations with Hispanic or Asian populations (OR=0.72 [0.46, 1.11], p=0.13). There was a substantial disparity between gay, bisexual and other men-who-have-sex-with-men (GBMSM) and heterosexual populations, with significantly higher odds of mpox among the former (OR=393.80, 95% CI: [82.45, 180.85], p<0.00001). Analysis of sexual partners indicates a significant difference in infection risk between individuals with zero to one sexual partner and those with more than two partners (OR=0.06 [0.01, 0.28], p=0.0005). Additionally, there is a substantial difference in infection risk between male and female populations (OR=3868.02, p<0.00001). These findings emphasize the importance of considering demographic factors in understanding mpox transmission and risk profiles. Targeted research and intervention strategies are required to address the identified disparities and mitigate the spread of mpox.


Assuntos
Mpox , Minorias Sexuais e de Gênero , Humanos , Feminino , Masculino , Homossexualidade Masculina , Demografia
2.
Cytotherapy ; 25(4): 353-361, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36241491

RESUMO

Fractures in bone, a tissue critical in protecting other organs, affect patients' quality of life and have a heavy economic burden on societies. Based on regenerative medicine and bone tissue engineering approaches, stem cells have become a promising and attractive strategy for repairing bone fractures via differentiation into bone-forming cells and production of favorable mediators. Recent evidence suggests that stem cell-derived exosomes could mediate the therapeutic effects of their counterpart cells and provide a cell-free therapeutic strategy in bone repair. Since bone is a highly vascularized tissue, coupling angiogenesis and osteogenesis is critical in bone fracture healing; thus, developing therapeutic strategies to promote angiogenesis will facilitate bone regeneration and healing. To this end, stem cell-derived exosomes with angiogenic potency have been developed to improve fracture healing. This review summarizes the effects of stem cell-derived exosomes on the repair of bone tissue, focusing on the angiogenesis process.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Qualidade de Vida , Neovascularização Fisiológica , Células-Tronco , Regeneração Óssea , Osteogênese
3.
Bioorg Chem ; 132: 106344, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669356

RESUMO

In this study, new derivatives of the antitubercular and anti-inflammatory drug, 4-aminosaliclic acids (4-ASA) were synthesized, characterized, and evaluated for these activities. In vivo and in viro evaluation of anti-inflammatory activity revealed that compounds 10, 19 and 20 are the most active with potent cyclooxygenase-2 (COX-2) and 5-lipooxgenase (5-LOX) inhibition and without causing gasric lesions. The minimum inhibitory concentrations (MIC) of the newly synthesized compound were, also, measured against Mycobacterium tuberculosis H37RV. Among the tested compounds 17, 19 and 20 exhibited significant activities against the growth of M. tuberculosis. 20 is the most potent with (MIC 1.04 µM) 2.5 folds more potent than the parent drug 4-ASA. 20 displayed low cytotoxicity against normal cell providing a high therapeutic index. Important structure features were analyzed by docking and structure-activity relationship analysis to give better insights into the structural determinants for predicting the anti-inflammatory and anti-TB activities. Our results indicated that compounds 19 and 20 are potential lead compounds for the discovery of dual anti-inflammatory and anti-TB drug candidates.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Antituberculosos/química , Relação Estrutura-Atividade , Estrutura Molecular , Testes de Sensibilidade Microbiana
4.
Mol Divers ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884781

RESUMO

Cisplatin is a cancer medication widely used today, but it still poses some problems due to its toxic properties in the body. To overcome this issue, a new complex has been developed as a potential anticancer drug prospect by minimizing its toxic consequences. A novel Zn(II)IleDTC complex containing isoleucine dithiocarbamate ligands has been produced and analyzed using a range of analytical and spectroscopic methods. The Zn(II) IleDTC complex were characterized using various methods, including UV-Vis spectroscopy, FT-IR, determination of melting point, conductivity, and HOMO-LUMO analysis. Furthermore, computational NMR spectrum analysis was conducted in this study. Molecular docking studies was conducted to evaluate the potential of Zn(II) isoleucine dithiocarbamate as an HIF1 inhibitor. The results showed that the Zn complex exhibited a good docking score of -6.6 and formed hydrogen bonds with ARG 17, VAL264, and GLU15, alkyl bonds with TRP27 and LEU32, and Pi-Alkyl bonds with PRO41 and ARG44. This suggests that the Zn(II) isoleucine dithiocarbamate complex could be a promising candidate for cancer treatment with potential HIF1 inhibition properties. To assess the dynamic stability and efficacy of protein-ligand interactions over time, molecular dynamics simulations was conducted for both individual proteins and protein complexes. The cytotoxicity evaluation of Zn(II) isoleucine dithiocarbamate against MCF-7 cells obtained an IC50 value of 362.70 µg/mL indicating moderate cytotoxicity and morphological changes of cancer cells causing cancer cells to undergo apoptosis. The Zn(II) isoleucine dithiocarbamate complex may have promising potential as an anticancer compound due to its significant inhibitory effect on the breast cancer cell line (MCF7). According to the ADMET study, the complex exhibits drug-like characteristics with low toxicity, further supporting its potential as a viable drug candidate.

5.
Chem Pharm Bull (Tokyo) ; 71(3): 240-249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858530

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are clinically available to control blood glucose levels in diabetic patients via an insulin-independent mechanism. It was found that some carbasugar analogs of known SGLT2 inhibitors exert a high inhibiting ability toward SGLT2 and have a prolonged blood glucose lowering effect. In this study, we designed new candidates of carbasugar SGLT2 inhibitor that can be synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC) into an aromatic ring, which is a part of the pharmacophore at the final stage in the synthetic protocol for the easier discovery of superior SGLT2 inhibitors. Based on the results of molecular docking studies, some selected compounds have been synthesized. Evaluation of these compounds using a cell-based assay revealed that the majority of these compounds had SGLT2 inhibitory activity in a dose-dependent manner. The SGLT2 inhibitory activity of 7b and 7c was almost equal to that of SGLT2 inhibitors in current use. Furthermore, molecular dynamics simulations also revealed that 7c is a promising novel SGLT2 inhibitor.


Assuntos
Carbaçúcares , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Alcinos , Azidas , Glicemia , Química Click , Simulação de Acoplamento Molecular , Transportador 2 de Glucose-Sódio , Reação de Cicloadição
6.
Trop Anim Health Prod ; 55(5): 285, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540299

RESUMO

Bluetongue virus (BTV) is a vector-borne virus that primarily affects sheep. However, the disease is usually asymptomatic in cattle without obvious clinical signs related to BTV infection. Although there is evidence of BTV antibodies through serology in Egypt, it is still unknown whether Egyptian cattle have ever been exposed to the virus in the north or south of the country. The study's aims were to determine the seroprevalence of BTV and evaluate the potential risk factors for BTV infection in cattle in Egypt. We used a competitive ELISA to screen 690 healthy cattle for BTV-specific immunoglobulin G (IgG) antibodies in four governorates in Egypt. A total seroprevalence of BTV antibodies in examined cattle was 51.47%, 95%CI: 48.01-55.45. The odds of BTV seropositivity were higher in Aswan (OR=1.30, 95%CI: 0.71-2.36), females (OR=3.29, 95%CI: 1.87-5.79), and elder cattle >8 years (OR=12.91, 95%CI: 6.63-25.13). Moreover, cattle contacted with other animals (OR=1.40, 95%CI: 0.94-2.10), with history of abortion (OR=4.88, 95%CI: 3.14-7.59), and those living with presence of insects (OR=12.34, 95%CI: 8-19.30) were more likely to be infected with bluetongue (BT). To effectively predict and respond to a potential BTV outbreak in Egypt, surveillance for BTV infection should be expanded to cover other susceptible ruminants and the range of the insect vectors.


Assuntos
Vírus Bluetongue , Bluetongue , Doenças dos Bovinos , Doenças dos Ovinos , Feminino , Bovinos , Animais , Ovinos , Estudos Soroepidemiológicos , Ruminantes , Bluetongue/epidemiologia , Anticorpos Antivirais , Fatores de Risco
7.
Trop Anim Health Prod ; 55(5): 345, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37789189

RESUMO

Rift Valley fever (RVF) is a mosquito-borne viral disease that affects a variety of domestic animals, including cattle, sheep, goats, and camels, and has zoonotic potential. Although the rift valley fever virus (RVFV) is usually asymptomatic in camels, it can induce abortion in some pregnant animals. In the current study, a serosurvey was carried out to investigate the prevalence of RVFV antibodies and related risk factors in camels from four Egyptian governorates. A total of 400 serum samples were examined for anti-RVFV antibodies using a competitive enzyme-linked immunosorbent assay (c-ELISA). The results revealed that the overall prevalence of RVF among examined camels was 21.5% and the disease was more prevalent in Kafr ElSheikh governorate in Nile Delta of Egypt. In addition, the age group of camels with more than 5 years (OR=4.49, 95%CI: 1.39-14.49), the female sex (OR=3.38, 95%CI: 1.51-7.58), the emaciated animals (OR=1.52, 95%CI: 0.86-2.66), the summer season's infection (OR=5.98, 95%CI: 1.79-19.93), the presence of mosquitoes (OR= 2.88, 95%CI: 1.39-5.95), and the absence of mosquitoes control (OR=3.97, 95%CI: 2.09-7.57) were identified as risk factors for RVFV infection. The results of this study support knowledge on the risk factors for RVFV infection and demonstrate that camels raising in Egypt have RVFV antibodies. Quarantine measures or vaccination program should be implemented to reduce the likelihood of RVFV introduction, dissemination among susceptible animals, and ultimately transmission to humans.


Assuntos
Doenças dos Bovinos , Doenças das Cabras , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Humanos , Gravidez , Bovinos , Animais , Feminino , Ovinos , Camelus , Egito/epidemiologia , Estudos Soroepidemiológicos , Febre do Vale de Rift/epidemiologia , Cabras , Anticorpos Antivirais , Doenças dos Bovinos/epidemiologia , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia
8.
J Med Virol ; 94(4): 1627-1632, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34888894

RESUMO

Following the discovery of the SARS-CoV-2 Omicron variant (B.1.1.529), the global COVID-19 outbreak has resurfaced after appearing to be relentlessly spreading over the past 2 years. This new variant showed marked degree of mutation, compared with the previous SARS-CoV-2 variants. This study investigates the evolutionary links between Omicron variant and recently emerged SARS-CoV-2 variants. The entire genome sequences of SARS-CoV-2 variants were obtained, aligned using Clustal Omega, pairwise comparison was computed, differences, identity percent, gaps, and mutations were noted, and the identity matrix was generated. The phylogenetics of Omicron variants were determined using a variety of evolutionary substitution models. The ultrametric and metric clustering methods, such as UPGMA and neighbor-joining (NJ), using nucleotide substitution models that allowed the inclusion of nucleotide transitions and transversions as Kimura 80 models, revealed that the Omicron variant forms a new monophyletic clade that is distant from other SARS-CoV-2 variants. In contrast, the NJ method using a basic nucleotide substitution model such as Jukes-Cantor revealed a close relationship between the Omicron variant and the recently evolved Alpha variant. Based on the percentage of sequence identity, the closest variants were in the following order: Omicron, Alpha, Gamma, Delta, Beta, Mu, and then the SARS-CoV-2 USA isolate. A genome alignment with other variants indicated the greatest number of gaps in the Omicron variant's genome ranging from 43 to 63 gaps. It is possible, given their close relationship to the Alpha variety, that Omicron has been around for much longer than predicted, even though they created a separate monophyletic group. Sequencing initiatives in a systematic and comprehensive manner is highly recommended to study the evolution and mutations of the virus.


Assuntos
Evolução Molecular , Genoma Viral/genética , Filogenia , SARS-CoV-2/genética , Sequência de Bases , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Mutação , Alinhamento de Sequência
9.
Future Oncol ; 18(38): 4209-4231, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519554

RESUMO

Increasing data have shown the significance of various miRNAs in malignancy. In this regard, parallel to its biological role in normal tissues, miRNA-128 (miR-128) has been found to play an essential immunomodulatory function in the process of cancer initiation and development. The occurrence of the aberrant expression of miR-128 in tumors and the unique properties of miRNAs raise the prospect of their use as biomarkers and the next generation of molecular anticancer therapies. The function of miR-128 in malignancies such as breast, prostate, colorectal, gastric, pancreatic, esophageal, cervical, ovarian and bladder cancers and hepatocellular carcinoma is discussed in this review. Finally, the effect of exosomal miR-128 on cancer resistance to therapeutics and cancer immunotherapy in certain malignancies is highlighted.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Neoplasias Urogenitais , Masculino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Próstata/metabolismo
10.
Molecules ; 27(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36364209

RESUMO

The activity of the P-glycoprotein (P-gp) transporter encoded by the ABCB1 gene confers resistance to anticancer drugs and contributes to cancer-related mortality and morbidity. Recent studies revealed the cytotoxic effects of the endogenous dipeptide carnosine. The current study aimed to investigate the role of carnosine as a potential inhibitor of P-gp activity. We used molecular docking and molecular dynamic simulations to study the possible binding and stability of carnosine-P-gp interactions compared with verapamil. In vitro assays using doxorubicin-resistant NCI/ADR-RES cells were established to test the effects of carnosine (10-300 µM) on P-gp activity by the rhodamine-123 efflux assay and its effect on cell viability and doxorubicin-induced cytotoxicity. Verapamil (10 µM) was used as a positive control. The results showed that carnosine binding depends mainly on hydrogen bonding with GLU875, GLN946, and ALA871, with a higher average Hbond than verapamil. Carnosine showed significant but weaker than verapamil-induced rhodamine-123 accumulation. Carnosine and verapamil similarly inhibited cell viability. However, verapamil showed a more significant potentiating effect on doxorubicin-induced cytotoxicity than a weaker effect of carnosine at 300 µM. These results suggest that carnosine inhibits P-gp activity and potentiates doxorubicin-induced cytotoxicity at higher concentrations. Carnosine might be a helpful lead compound in the fight against multidrug-resistant cancers.


Assuntos
Antineoplásicos , Carnosina , Resistência a Múltiplos Medicamentos , Carnosina/farmacologia , Carnosina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina/farmacologia , Rodamina 123/farmacologia , Verapamil/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia
11.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432057

RESUMO

In present study, we used Olea europaea leaf extract to biosynthesize in situ Copper Oxide nanocrystals (CuO @OVLe NCs) with powerful antibacterial and anti-cancer capabilities. Physio-chemical analyses, such as UV/Vis, FTIR, XRD, EDX, SEM, and TEM, were applied to characterize CuO @OVLe NCs. The UV/Vis spectrum demonstrated a strong peak at 345 nm. Furthermore, FTIR, XRD, and EDX validated the coating operation's contact with colloidal CuO @OVLe NCs. According to TEM and SEM analyses, CuO @OVLe NCs exhibited a spherical shape and uniform distribution of size with aggregation, for an average size of ~75 nm. The nanoparticles demonstrated a considerable antibacterial effect against E. faecium bacterial growth, as well as an increased inhibition rate in a dose-dependent manner on the MCF-7, PC3, and HpeG2 cancer cell lines and a decreased inhibition rate on WRL-68. Molecular docking and MD simulation were used to demonstrate the high binding affinity of a ligand (Oleuropein) toward the lectin receptor complex of the outer membrane to vancomycin-resistant E. faecium (VREfm) via amino acids (Leu 195, Thr 288, His 165, and Ser 196). Hence, our results expand the accessibility of OVLe's bioactive components as a promising natural source for the manufacture of physiologically active components and the creation of green biosynthesis of metal nanocrystals.


Assuntos
Anti-Infecciosos , Enterococcus faecium , Nanopartículas Metálicas , Enterococos Resistentes à Vancomicina , Cobre , Disponibilidade Biológica , Vancomicina , Lectinas , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Óxidos
12.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566029

RESUMO

Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure-activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules' potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Proteínas de Transporte , Inseticidas/química , Inseticidas/farmacologia , Hormônios Juvenis/farmacologia , Larva , Simulação de Acoplamento Molecular , Controle de Mosquitos , Mosquitos Vetores , Pirimidinonas/farmacologia
13.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296501

RESUMO

The 4-allyl guaiacol is a natural phenolic molecule that has been widely studied for its antioxidant capacity against reactive-oxygen-species-mediated cellular damage. Therefore, we hypothesized that concomitant use of an antioxidant and NSAID may decrease the risk of gastrointestinal toxicity and make the therapy safer. To address the gastrointestinal toxicity of conventional NSAIDs, a new S-naproxen-4-allyl guaiacol chimera (MAS-1696) was computationally developed, chemically synthesized, and tested for anti-inflammatory effectiveness and gastrointestinal safety. The inhibitory potency of MAS-1696 tested against cyclooxygenase-2 (COX2), 15-lipoxygenase-2 (15-LOX2), and lipoxygenase-5 (5-LOX) in vitro revealed a stronger inhibition of COX2. Furthermore, the MAS-1696 chimera increased the COX selectivity index by 23% as compared to the parent compound naproxen, implying higher efficacy and gastric safety. In vivo data showed that MAS-1696 was less likely to cause gastrointestinal harm than naproxen while also exerting anti-inflammatory and analgesic effects equivalent to or superior to naproxen. In conclusion, MAS-1696 is orally active, bio-labile, and crystalline, making it a medication that may be administered orally.


Assuntos
Gastroenteropatias , Naproxeno , Humanos , Anti-Inflamatórios , Anti-Inflamatórios não Esteroides/química , Antioxidantes , Araquidonato 15-Lipoxigenase , Ciclo-Oxigenase 2 , Gastroenteropatias/tratamento farmacológico , Guaiacol , Naproxeno/farmacologia , Naproxeno/uso terapêutico , Oxigênio
14.
J Med Virol ; 93(3): 1581-1588, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32902889

RESUMO

The papain-like protease (PLpro ) is an important enzyme for coronavirus polyprotein processing, as well as for virus-host immune suppression. Previous studies reveal that a molecular analysis of PLpro indicates the catalytic activity of viral PLpro and its interactions with ubiquitin. By using sequence comparisons, molecular models, and protein-protein interaction maps, PLpro was compared in the three recorded fatal CoV epidemics, which involved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome CoV (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV). The pairwise sequence comparison of SARS-CoV-2 PLpro indicated similarity percentages of 82.59% and 30.06% with SARS-CoV PLpro and MERS-CoV PLpro , respectively. In comparison with SARS-CoV PLpro , in SARS-CoV-2, the PLpro had a conserved catalytic triad of C111, H278, and D293, with a slightly lower number of polar interface residues and of hydrogen bonds, a higher number of buried interface sizes, and a lower number of residues that interact with ubiquitin and PLpro . These features might contribute to a similar or slightly lower level of deubiquitinating activity in SARS-CoV-2 PLpro. It was, however, a much higher level compared to MERS-CoV, which contained amino acid mutations and a low number of polar interfaces. SARS-CoV-2 PLpro and SARS-CoV PLpro showed almost the same catalytic site profiles, interface area compositions and polarities, suggesting a general similarity in deubiquitination activity. Compared with MERS-CoV, SARS-CoV-2 had a higher potential for binding interactions with ubiquitin. These estimated parameters contribute to the knowledge gap in understanding how the new virus interacts with the immune system.


Assuntos
COVID-19/patologia , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , SARS-CoV-2/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Sequência de Aminoácidos , Domínio Catalítico/fisiologia , Humanos , Modelos Moleculares , Poliproteínas/biossíntese , Poliproteínas/genética , Alinhamento de Sequência , Síndrome Respiratória Aguda Grave/patologia , Ubiquitina/metabolismo , Proteínas Virais/biossíntese , Proteínas Virais/genética
15.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200764

RESUMO

The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a-e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, ß = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Indolizinas/química , Anti-Inflamatórios/química , Cristalografia por Raios X/métodos , Ciclo-Oxigenase 2/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indometacina/química , Relação Estrutura-Atividade
16.
J Med Virol ; 92(6): 660-666, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32159237

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging disease with fatal outcomes. In this study, a fundamental knowledge gap question is to be resolved by evaluating the differences in biological and pathogenic aspects of SARS-CoV-2 and the changes in SARS-CoV-2 in comparison with the two prior major COV epidemics, SARS and Middle East respiratory syndrome (MERS) coronaviruses. METHODS: The genome composition, nucleotide analysis, codon usage indices, relative synonymous codons usage, and effective number of codons (ENc) were analyzed in the four structural genes; Spike (S), Envelope (E), membrane (M), and Nucleocapsid (N) genes, and two of the most important nonstructural genes comprising RNA-dependent RNA polymerase and main protease (Mpro) of SARS-CoV-2, Beta-CoV from pangolins, bat SARS, MERS, and SARS CoVs. RESULTS: SARS-CoV-2 prefers pyrimidine rich codons to purines. Most high-frequency codons were ending with A or T, while the low frequency and rare codons were ending with G or C. SARS-CoV-2 structural proteins showed 5 to 20 lower ENc values, compared with SARS, bat SARS, and MERS CoVs. This implies higher codon bias and higher gene expression efficiency of SARS-CoV-2 structural proteins. SARS-CoV-2 encoded the highest number of over-biased and negatively biased codons. Pangolin Beta-CoV showed little differences with SARS-CoV-2 ENc values, compared with SARS, bat SARS, and MERS CoV. CONCLUSION: Extreme bias and lower ENc values of SARS-CoV-2, especially in Spike, Envelope, and Mpro genes, are suggestive for higher gene expression efficiency, compared with SARS, bat SARS, and MERS CoVs.


Assuntos
Betacoronavirus/genética , Cisteína Endopeptidases/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Proteínas do Nucleocapsídeo/genética , RNA Polimerase Dependente de RNA/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Animais , Sequência de Bases , Betacoronavirus/classificação , Betacoronavirus/patogenicidade , COVID-19 , Quirópteros/microbiologia , Uso do Códon , Biologia Computacional , Proteases 3C de Coronavírus , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , Cisteína Endopeptidases/metabolismo , Eutérios/microbiologia , Expressão Gênica , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Proteínas do Nucleocapsídeo/metabolismo , Pandemias , Fosfoproteínas , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , RNA Polimerase Dependente de RNA/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2 , Homologia de Sequência do Ácido Nucleico , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/transmissão , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
17.
J Med Virol ; 92(9): 1665-1670, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32330296

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus that causes infection with a potentially fatal outcome. Dendrimers are highly branched molecules that can be added to antiviral preparations to improve their delivery, as well as their intrinsic antiviral activity. Studies on identifying anti-MERS-CoV agents are few. Three types of polyanionic dendrimers comprising the terminal groups sodium carboxylate (generations 1.5, 2.5, 3.5, and 4.5), hydroxyl (generations 2, 3, 4, and 5), and succinamic acid (generations 2, 3, 4, and 5) and polycationic dendrimers containing primary amine (generations 2, 3, 4, and 5) were used to assess their antiviral activity with the MERS-CoV plaque inhibition assay. The hydroxyl polyanionic set showed a 17.36% to 29.75% decrease in MERS-CoV plaque formation. The most potent inhibition of MERS-CoV plaque formation was seen by G(1.5)-16COONa (40.5% inhibition), followed by G(5)-128SA (39.77% inhibition). In contrast, the cationic dendrimers were cytotoxic to Vero cells. Polyanionic dendrimers can be added to antiviral preparations to improve the delivery of antivirals, as well as the intrinsic antiviral activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Dendrímeros , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Poliaminas/química , Poliaminas/farmacologia , Animais , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Estrutura Molecular , Projetos Piloto , Células Vero , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
18.
Mol Cell Biochem ; 465(1-2): 53-64, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31834612

RESUMO

IRE1 is the most conserved endoplasmic reticulum (ER)-resident stress sensor. Its activation not only splices XBP1 but also participates in a variety of cell signaling. We elucidated the role of IRE1α in Neuro2a cells by establishing IRE1α-deficient cells and applying four IRE1 inhibitors. IRE1α deficiency prevented almost all spliced XBP1 (sXBP1) protein expression by treatment with thapsigargin (Tg) and tunicamycin (Tm); these phenomena paralleled the values measured by our two Nanoluciferase-based IRE1 assays. However, cell viability and protein expression of other ER stress-responsive factors in the IRE1α-deficient cells were comparable to those in the parental wild-type cells with or without Tm treatment. Next, we elucidated the IRE1 inhibitory actions and cytotoxicity of four compounds: STF083010, KIRA6, 4µ8C, and toyocamycin. KIRA6 attenuated IRE1 activity in a dose-dependent manner, but it showed severe cytotoxicity even in the IRE1α-deficient cells at a low concentration. The IRE1α-deficient cells were slightly resistant to KIRA6 at 0.1 µM in both the presence and absence of ER stress; however, resistance was not observed at 0.02 µM. Treatment with only KIRA6 at 0.1 µM for 12 h remarkably induced LC3 II, an autophagic marker, in both parental and IRE1α-deficient cells. Co-treatment with KIRA6 and Tm induced LC3 II, cleaved caspase-9, and cleaved caspase-3; however, IRE1α-deficiency did not abolish the expression of these two cleaved caspases. On the other hand, KIRA6 prohibited Tm-induced ATF4 induction in an IRE1-independent manner; however, co-treatment with KIRA6 and Tm also induced LC3 II and two cleaved caspases in the ATF4-deficient Neuro2a cells. Thus, we demonstrate that IRE1α deficiency has little impact on cell viability and expression of ER stress-responsive factors in Neuro2a cells, and the pharmacological actions of KIRA6 include IRE1-independent ways.


Assuntos
Sistemas CRISPR-Cas , Citotoxinas/farmacologia , Endorribonucleases/deficiência , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases/deficiência , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Camundongos
19.
Bioorg Med Chem Lett ; 30(24): 127637, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33132114

RESUMO

We found that sulfisomidine, a sulfonamide antibiotic, potently binds to the Piwi/Argonaute/Zwille (PAZ) domain of human Argonaute protein 2 and inhibits RNA interference (RNAi). To elucidate the effect on RNAi of strong affinity of the 3'-ends in small interfering RNA (siRNA) to the PAZ domain, chemically modified siRNAs bearing sulfisomidine at the 3'-end were synthesized.


Assuntos
Antibacterianos/farmacologia , Proteínas Argonautas/metabolismo , Interferência de RNA/efeitos dos fármacos , Sulfisomidina/farmacologia , Proteínas Argonautas/química , Humanos , Domínios Proteicos/efeitos dos fármacos , RNA Interferente Pequeno/antagonistas & inibidores , Sulfonamidas/farmacologia
20.
Acta Vet Hung ; 68(1): 59-64, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32384074

RESUMO

This study was conducted to evaluate the pharmacokinetics of cefquinome in camel calves after a single intramuscular injection in a dose of 2 mg/kg body weight (kg b. w.). Cefquinome concentrations were measured by ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS). A non-compartmental pharmacokinetic model was used to fit the time-concentration curve and estimate the pharmacokinetic parameters. The peak serum concentration (Cmax) was 28.4 µg/mL at the time of maximum concentration (Tmax) of 25 min. The elimination half-life (t1/2) was 17.4 h. The area under the concentration-time curve (AUC0-∞) was 103.7 µg/ml-1h and the mean residence time (MRT0-∞) was 21.3 h. In comparison with other animal species, the pharmacokinetics of cefquinome in Arabian camel calves showed faster absorption from the site of injection and slower elimination. Since cefquinome, as other beta-lactams, is a time-dependent antimicrobial agent, a single dose of 2 mg/kg b. w. might be sufficient against the most sensitive organisms in camel calves owing to its prolonged elimination phase. However, dose readjustment is required for cases needing concentrations above 2 µg/mL for 12 h or above 1 µg/mL for 24 h.


Assuntos
Antibacterianos/farmacocinética , Camelus/metabolismo , Cefalosporinas/farmacocinética , Injeções Intramusculares/veterinária , Animais , Antibacterianos/administração & dosagem , Cefalosporinas/administração & dosagem , Masculino , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA