Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244802

RESUMO

The double sex and mab-3-related transcription factors like family C2 (DMRTC2) gene is indispensable for mammalian testicular function and spermatogenesis. Despite its importance, what expression and roles of DMRTC2 possesses and how it regulates the testicular development and spermatogenesis in sheep, especially in Tibetan sheep, remains largely unknown. In this study, DMRTC2 cDNA from testes of Tibetan sheep was firstly cloned by the RT-PCR method, and its molecular characterization was identified. Subsequently, the expression and localization patterns of DMRTC2 were evaluated by quantitative real-time PCR (qPCR), Western blot, and immunofluorescence. The cloning and sequence analysis showed that the Tibetan sheep DMRTC2 cDNA fragment contained 1113 bp open reading frame (ORF) capable of encoding 370 amino acids, and displayed high identities with some other mammals, which shared an identical DM domain sequence of 47 amino acids ranged from residues 38 to 84. qPCR and Western blot results showed that DMRTC2 was expressed in testes throughout the development stages while not in epididymides (caput, corpus, and cauda), with higher mRNA and protein abundance in Tibetan sheep testes of one- and three-year-old (post-puberty) compared with that of three-month-old (pre-puberty). Immunofluorescence results revealed that immune staining for DMRTC2 protein was observed in spermatids and spermatogonia from post-puberty Tibetan sheep testes, and gonocytes from pre-puberty Tibetan sheep testes. Together, these results demonstrated, for the first time, in sheep, that DMRTC2, as a highly conserved gene in mammals, is essential for sheep spermatogenesis by regulating the proliferation or differentiation of gonocytes and development of spermatids in ram testes at different stages of maturity.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Ovinos/genética , Espermátides/metabolismo , Espermatogênese/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Tibet
2.
J Environ Manage ; 154: 351-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25753397

RESUMO

A long-term greenhouse experiment (2004-2012) was conducted with continuous tomato (Lycopersicum esculentum Mill.) plantings to understand the influence of an exogenous nitrogen supply from irrigation water, chemical fertilizer, or organic amendment on the N balance and soluble organic nitrogen (SON). The results from 16 tomato growing seasons indicated that the application of organic amendment (manure and straw) alone (Or-N) resulted in the same yield as the conventional chemical N with organic amendment (Co-N) and the reduced chemical N with organic amendment (Re-N) treatments. The annual apparent N loss was >1000 and 438 kg N ha(-1) in the Co-N and Re-N treatments, respectively. Over the study period, the SON in the 1.8 m soil profile was 1449 and 1978 kg N ha(-1) in the Re-N and Co-N treatments, respectively, it was 1.7- and 2.3-fold higher than that observed in the Or-N treatment, which indicated that SON increased with the chemical N application. The percentage of SON in the cumulative soluble N (SON plus mineral N) ranged from 28% to 44%, and there were no significant differences across the 0-0.6, 0.6-1.2, and 1.2-1.8 m soil profile, which indicated that the leaching and distribution of SON was similar to those of the mineral N in the 0-1.8 m soil profile. We conclude that the mobility of soluble organic N in the 0-1.8 m of the soil was synchronous with the mineral N under a greenhouse production system, and the risk of soluble organic N leaching increased with inorganic N application rate. Therefore, leaching of SON in the intensive agriculture should not be ignored when evaluating the risk of N leaching.


Assuntos
Agricultura/métodos , Fertilizantes/análise , Nitrogênio/análise , Poluentes do Solo/análise , Verduras , Monitoramento Ambiental , Humanos
3.
Microorganisms ; 11(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37894129

RESUMO

Early weaning stress in lambs leads to decreased feed intake, damage to intestinal morphology, changes in the microbial flora structure, and subsequent complications. Yeast peptides are antimicrobial peptides with anti-inflammatory, antioxidant, and bacteriostasis effects. To study the effects of yeast peptides on relieving weaning stress in lambs, 54 lambs were randomly divided into three groups: ewe-reared (ER), yeast-peptide-treated (AP), and early-weaned (EW) lambs. The body weight and dry matter intake did not significantly differ among all groups. After weaning, the daily gain and feed conversion rate decreased significantly (p < 0.01), but AP showed an upward trend. In the EW group, immunoglobulin (Ig) levels changed significantly post-weaning (IgG decreased; IgA and IgM increased); the villi shortened, the crypt depth increased, and the villi height/crypt depth decreased (p < 0.001). The abundance and diversity of microflora among all groups were not significantly different. A column coordinate analysis showed significant differences in the intestinal microbial structure between the AP and EW groups. Lactobacillus, Aeriscardovia, Ruminosaceae_UCG-014, and Catenisphaera may play key roles in alleviating weaning stress in lambs. Our study provides new clues for alleviating weaning stress in lambs by describing the influence of yeast peptides on the intestinal microflora during weaning.

4.
Animals (Basel) ; 13(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37684996

RESUMO

The purpose of this experiment was to evaluate changes in fermentation quality, chemical composition, aerobic stability, anti-nutritional factors, and in situ disappearance characteristics of various protein-based total mixed rations. Soybean meal (control, non-fermented), fermented cottonseed meal (F-CSM), and fermented rapeseed meal (F-RSM) group were used to prepare the TMRs with corn, whole-plant corn silage, corn stalks, wheat bran, and premix. The test groups were inoculated at 50% moisture with Bacillus clausii and Saccharomyces cariocanus and stored aerobically for 60 h. The nylon-bag method was used to measure and study the rumen's nutrient degradation. The pH of all TMRs after 48 h of air exposure was below 4.8, whereas that of the F-CSM and control and F-RSM groups increased to 5.0 and >7.0, respectively. After 8 h of aerobic exposure, the temperatures of all groups significantly increased, and 56 h later, they were 2 °C higher than the surrounding air. The lactic acid concentration in the F-CSM and F-RSM groups increased after 12 h of aerobic exposure and then decreased. The acetic acid concentrations in the fermented groups decreased significantly with the increasing air-exposure time. The yeast population of the TMRs increased to more than 8.0 log10 CFU/g before 72 h of air exposure, followed by a decrease in the population (5.0 log10 CFU/g). After fermentation, the free gossypol (FG) concentration in F-CSM decreased by half and did not change significantly during the air-exposure period. Fermentation with probiotics also reduced the F-RSM's glucosinolate concentration, resulting in a more than 50% detoxification rate. Compared with the F-CSM and F-RSM groups, the effective degradation rates of nutrients in the control group were the lowest, and the dry matter (DM), crude protein (CP), natural detergent fiber (NDF), and acid detergent fiber (ADF) all degraded effectively at rates of 28.4%, 34.5%, 27.8%, and 22.8%, respectively. Fermentation with B. clausii and S. cariocanus could improve the fermentation quality and nutrient composition, decrease the anti-nutritional factor, and increase nutrient degradation of the TMR with cottonseed meal or rapeseed meal as the main protein source, thus achieving detoxification.

5.
Front Microbiol ; 14: 1119887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007511

RESUMO

Background: This study examined the effects of substituting cottonseed meal (CSM) or rapeseed meal (RSM) for soybean meal (SBM) on Hu sheep performance, rumen fermentation, and bacterial composition. 51 four-month-old indigenous male Hu sheep with starting body weights of 22.51 ± 2.84 kg and similar origins were randomly assigned to three treatments; (1) non-fermented total mixed ration (TMR) with SBM (CK), (2) fermented TMR containing CSM (F-CSM group), and (3) fermented TMR containing RSM (F-RSM group). Results: The three groups' intake of dry matter differed significantly (p < 0.05). In terms of average daily gain, the F-RSM group outperformed the CK and F-CSM groups (p < 0.05). The pH of the rumen was substantially lower in the CK group than in the F-CSM and F-RSM groups (p < 0.05), and the F-CSM group had greater amounts of volatile fatty acids (VFA) than the F-RSM and CK groups. In comparison to the CK group, the microbial crude protein yield was significantly higher in the F-CSM and F-RSM groups (p < 0.05). The F-CSM group significantly outperformed the F-RSM group of pepsin and cellulose enzyme activity (p < 0.05). The relative abundance of Bacteroidetes was greater in the CK and F-RSM groups compared to the F-CSM group (p < 0.05). In comparison to the other groups, Firmicutes were less abundant in the CK group (p < 0.05). Prevotella was present in a higher relative abundance in the F-CSM and F-RSM groups than in the CK group (p < 0.05). Prevotella was greater in relative abundance in the F-CSM and F-RSM groups than in the CK group (p < 0.05). The relative abundances of Veillonellaceae_UCG-001 and Lachnospiraceae_XPB1014 correlated with rumen butyric acid content and NH3-N content (p < 0.05). Gene function prediction revealed that replacing SBM with F-CSM or F-RSM in the diet of Hu sheep can promote glycan biosynthesis and metabolism. Conclusion: The replacement of F-CSM and F-RSM for SBM has an influence on the richness and diversity of rumen bacteria at the phylum and genus levels. Replacement of SBM with F-CSM increased VFA yield and further promoted the performance of Hu sheep.

6.
J Environ Qual ; 51(1): 44-54, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34873710

RESUMO

Summer catch crop planting is commonly adapted to increase soil biodiversity and effectively reduce N leaching in intensively managed vegetable fields with double-cropping systems (winter-spring season and autumn-winter season) in China. However, little has been reported on the combined effects of summer catch crops (i.e., sweet corn [Zea mays L.]) and the incorporation of their shoot residue on N transformation and mobility in the soil profile. Here, we quantified dissolved organic N (DON) leaching, N release from the incorporated residue of sweet corn, and N movement in the rootzone using the 15 N isotopic labeling technique and a lysimeter in a vegetable greenhouse field. The results showed that catch crop planting in addition to shoot incorporation significantly increased DON by 127 and 158% in the leachate at a depth of 0.6 m, accounting for 40% of the total leached dissolved N at the first season, whereas catch crop planting without shoot incorporation resulted in the lowest N surplus. Approximately 46 and 69% of the total N in the root residue and shoot residue of sweet corn was measured in the collected leachates during the succeeding cucumber (Cucumis sativus L. 'Zhongnong No. 26') season, accounting for 8 and 62% of the total leached N, respectively. Hence, catch crop planting is feasible for removing legacy N from soil during summer fallow; however, residue incorporation should be assessed due to the increase in N leaching derived from the shoots of the catch crop in the following season.


Assuntos
Nitrogênio , Verduras , Agricultura , Produtos Agrícolas , Nitrogênio/análise , Solo , Zea mays
7.
Front Vet Sci ; 9: 809188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548050

RESUMO

Early feeding regime has a substantial lifelong effect on lambs and weaning ewe's milk can lead to the intestinal injury of lambs. To explore the molecular regulatory mechanism of intestinal injury of lambs under weaning stress, the jejunum was conducted transcriptome and then integrated analyzed with our previous proteome data. A total of 255 upregulated genes and 285 downregulated genes were significantly identified. These genes showed low overlapping with differentially expressed proteins identified by isobaric tags for relative and absolute quantification (iTRAQ). However, according to their functions, the differentially expressed genes (DEGs) and proteins with the same expression trend were enriched for the similar Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as intestinal lipid absorption, urea cycle, peroxisome proliferator-activated receptor (PPAR) signaling pathway, and ferroptosis. Furthermore, the DEGs, including FABP2, ACSL3, APOA2, APOC3, and PCK1, might play essential roles in intestinal lipid absorption and immune response through the PPAR signaling pathway and ferroptosis. This study could provide new insights into early lamb breeding at the molecular level.

8.
J Hazard Mater ; 438: 129507, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35999736

RESUMO

Biodegradable mulch film (BDM) is considered as an environmentally sustainable alternative to low density polyethylene (LDPE) mulch film. However, the low degradation rate of BDM resulted in residues in soil after service period which were similar to LDPE mulch film. Distinguishing the differential responses of crop growth, soil bacteria and metabolism to residues of BDM and LDPE mulch films is favourable for comparing the environmental toxicities of the two materials. The results indicated that emergence rate and yield of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino) were significantly inhibited by two types mulch residues. BDM residues significantly decreased bacterial diversity by 1.2-2.3% through the enrichment of dominant phyla and inhibition of inferior phyla, while LDPE mulch residues not. The effects of BDM residues on soil metabolite spectrum were stronger than LDPE mulch residues with significant increase (3.9% 5.8%) in the abundance of total metabolites. Besides the pathways of metabolism, organismal systems, environmental information processing influenced by LDPE mulch resides, differential pathways including human diseases and cellular processes were also determined in soil with BDM residues. According to all the results of the present study, prior to the promotion of BDM, its influences on soil safety must be carefully investigated through critical and systematic research.


Assuntos
Polietileno , Solo , Agricultura/métodos , Bactérias , Humanos , Plásticos , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA