Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3940, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894561

RESUMO

Type 2 diabetes mellitus (T2DM) is closely linked to cognitive decline and alterations in brain structure and function. Resting-state functional magnetic resonance imaging (rs-fMRI) is used to diagnose neurodegenerative diseases, such as cognitive impairment (CI), Alzheimer's disease (AD), and vascular dementia (VaD). However, whether the functional connectivity (FC) of patients with T2DM and mild cognitive impairment (T2DM-MCI) is conducive to early diagnosis remains unclear. To answer this question, we analyzed the rs-fMRI data of 37 patients with T2DM and mild cognitive impairment (T2DM-MCI), 93 patients with T2DM but no cognitive impairment (T2DM-NCI), and 69 normal controls (NC). We achieved an accuracy of 87.91% in T2DM-MCI versus T2DM-NCI classification and 80% in T2DM-NCI versus NC classification using the XGBoost model. The thalamus, angular, caudate nucleus, and paracentral lobule contributed most to the classification outcome. Our findings provide valuable knowledge to classify and predict T2DM-related CI, can help with early clinical diagnosis of T2DM-MCI, and provide a basis for future studies.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia
2.
Clin Neuroradiol ; 33(2): 327-341, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36112176

RESUMO

PURPOSE: The white matter (WM) of the brain of type 2 diabetes mellitus (T2DM) patients is susceptible to neurodegenerative processes, but the specific types and positions of microstructural lesions along the fiber tracts remain unclear. METHODS: In this study 61 T2DM patients and 61 healthy controls were recruited and underwent diffusion spectrum imaging (DSI). The results were reconstructed with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). WM microstructural abnormalities were identified using tract-based spatial statistics (TBSS). Pointwise WM tract differences were detected through automatic fiber quantification (AFQ). The relationships between WM tract abnormalities and clinical characteristics were explored with partial correlation analysis. RESULTS: TBSS revealed widespread WM lesions in T2DM patients with decreased fractional anisotropy and axial diffusivity and an increased orientation dispersion index (ODI). The AFQ results showed microstructural abnormalities in T2DM patients in specific portions of the right superior longitudinal fasciculus (SLF), right arcuate fasciculus (ARC), left anterior thalamic radiation (ATR), and forceps major (FMA). In the right ARC of T2DM patients, an aberrant ODI was positively correlated with fasting insulin and insulin resistance, and an abnormal intracellular volume fraction was negatively correlated with fasting blood glucose. Additionally, negative associations were found between blood pressure and microstructural abnormalities in the right ARC, left ATR, and FMA in T2DM patients. CONCLUSION: Using AFQ, together with DTI and NODDI, various kinds of microstructural alterations in the right SLF, right ARC, left ATR, and FMA can be accurately identified and may be associated with insulin and glucose status and blood pressure in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Insulinas , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Tensor de Difusão/métodos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Anisotropia
3.
Cogn Neurodyn ; 17(6): 1525-1539, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37969945

RESUMO

An increasing number of recent brain imaging studies are dedicated to understanding the neuro mechanism of cognitive impairment in type 2 diabetes mellitus (T2DM) individuals. In contrast to efforts to date that are limited to static functional connectivity, here we investigate abnormal connectivity in T2DM individuals by characterizing the time-varying properties of brain functional networks. Using group independent component analysis (GICA), sliding-window analysis, and k-means clustering, we extracted thirty-one intrinsic connectivity networks (ICNs) and estimated four recurring brain states. We observed significant group differences in fraction time (FT) and mean dwell time (MDT), and significant negative correlation between the Montreal Cognitive Assessment (MoCA) scores and FT/MDT. We found that in the T2DM group the inter- and intra-network connectivity decreases and increases respectively for the default mode network (DMN) and task-positive network (TPN). We also found alteration in the precuneus network (PCUN) and enhanced connectivity between the salience network (SN) and the TPN. Our study provides evidence of alterations of large-scale resting networks in T2DM individuals and shed light on the fundamental mechanisms of neurocognitive deficits in T2DM.

4.
Front Neurol ; 13: 939318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408505

RESUMO

Purpose: This study aimed to investigate the changes in brain structure and function in middle-aged patients with type 2 diabetes mellitus (T2DM) using morphometry and blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). Methods: A total of 44 middle-aged patients with T2DM and 45 matched healthy controls (HCs) were recruited. Surface-based morphometry (SBM) was used to evaluate the changes in brain morphology. Degree centrality (DC) and functional connectivity (FC) were used to evaluate the changes in brain function. Results: Compared with HCs, middle-aged patients with T2DM exhibited cortical thickness reductions in the left pars opercularis, left transverse temporal, and right superior temporal gyri. Decreased DC values were observed in the cuneus and precuneus in T2DM. Hub-based FC analysis of these regions revealed lower connectivity in the bilateral hippocampus and parahippocampal gyrus, left precuneus, as well as left frontal sup. Conclusion: Cortical thickness, degree centrality, as well as functional connectivity were found to have significant changes in middle-aged patients with T2DM. Our observations provide potential evidence from neuroimaging for analysis to examine diabetes-related brain damage.

5.
Front Neurol ; 13: 930753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968313

RESUMO

Purpose: Stomach 36 (ST36, zusanli) is one of the important acupoints in acupuncture. Despite clinical functional magnetic resonance imaging (fMRI) studies of ST36 acupuncture, the brain activities and the neural mechanism following acupuncture at ST36 remain unclear. Methods: Literature searches were conducted on online databases, including MEDLINE, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Wanfang database, WeiPu database, and China Biology Medicine, for task-based fMRI studies of acupuncture at ST36 in healthy subjects. Brain regions activated by ST36 acupuncture were systematically evaluated and subjected to seed-based d mapping meta-analysis. Subgroup analysis was conducted on control procedures, manual acupuncture, electrical acupuncture (EA), and acupuncture-specific activations. Meta-regression analysis was performed to explore the effects of needle retention time on brain activities following ST36 acupuncture stimulation. The activated brain regions were further decoded and mapped on large-scale functional networks to further decipher the clinical relevance of acupuncturing at ST36. Results: A total of sixteen studies, involving a total of 401 right-handed healthy participants, that satisfied the inclusion criteria were included in the present meta-analysis. Meta-analysis showed that acupuncturing on ST36 positively activates the opercular part of the right inferior frontal gyrus (IFG.R), left superior temporal gyrus (STG.L), and right median cingulate/paracingulate gyri (MCG.R) regions. Needle retention time in an acupuncture session positively correlates with the activation of the left olfactory cortex, as shown in meta-regression analysis. Subgroup analysis revealed that EA stimulation may be a source of heterogeneity in the pooled results. Functional network mappings showed that the activated areas were mapped to the auditory network and salience network. Further functional decoding analysis showed that acupuncture on ST36 was associated with pain, secondary somatosensory, sound and language processing, and mood regulation. Conclusion: Acupuncture at ST36 in healthy individuals positively activates the opercular part of IFG.R, STG.L, and MCG.R. The left olfactory cortex may exhibit positive needle retention time-dependent activities. Our findings may have clinical implications for acupuncture in analgesia, language processing, and mood disorders. Systematic Review Registration: https://inplasy.com/inplasy-2021-12-0035.

6.
Front Neurosci ; 16: 926486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928014

RESUMO

Purpose: Cognitive impairment is generally found in individuals with type 2 diabetes mellitus (T2DM). Although they may not have visible symptoms of cognitive impairment in the early stages of the disorder, they are considered to be at high risk. Therefore, the classification of these patients is important for preventing the progression of cognitive impairment. Methods: In this study, a convolutional neural network was used to construct a model for classifying 107 T2DM patients with and without cognitive impairment based on T1-weighted structural MRI. The Montreal cognitive assessment score served as an index of the cognitive status of the patients. Results: The classifier could identify T2DM-related cognitive decline with a classification accuracy of 84.85% and achieved an area under the curve of 92.65%. Conclusions: The model can help clinicians analyze and predict cognitive impairment in patients and enable early treatment.

7.
Brain Behav ; 12(10): e2746, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36059152

RESUMO

BACKGROUND AND PURPOSE: Neurodegenerative processes are widespread in the brains of type 2 diabetes mellitus (T2DM) patients; gaps remain to exist in the current knowledge of the associated gray matter (GM) microstructural alterations. METHODS: A cross-sectional study was conducted to investigate alterations in GM microarchitecture in T2DM patients by diffusion tensor imaging and neurite orientation dispersion and density imaging (NODDI). Seventy-eight T2DM patients and seventy-four age-, sex-, and education level-matched healthy controls (HCs) without cognitive impairment were recruited. Cortical macrostructure and GM microstructure were assessed by surface-based analysis and GM-based spatial statistics (GBSS), respectively. Machine learning models were trained to evaluate the diagnostic values of cortical intracellular volume fraction (ICVF) for the classification of T2DM versus HCs. RESULTS: There were no differences in cortical thickness or area between the groups. GBSS analysis revealed similar GM microstructural patterns of significantly decreased fractional anisotropy, increased mean diffusivity and radial diffusivity in T2DM patients involving the frontal and parietal lobes, and significantly lower ICVF values were observed in nearly all brain regions of T2DM patients. A support vector machine model with a linear kernel was trained to realize the T2DM versus HC classification and exhibited the highest performance among the trained models, achieving an accuracy of 74% and an area under the curve of 83%. CONCLUSIONS: NODDI may help to probe the widespread GM neuritic density loss in T2DM patients occurs before measurable macrostructural alterations. The cortical ICVF values may provide valuable diagnostic information regarding the early GM microstructural alterations in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Sintase do Amido , Substância Branca , Encéfalo , Estudos Transversais , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Substância Cinzenta/diagnóstico por imagem , Humanos
8.
Front Neurosci ; 16: 887713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833084

RESUMO

In epidemiological studies, type 2 diabetes mellitus (T2DM) has been associated with cognitive impairment and dementia, but studies about functional network connectivity in T2DM without cognitive impairment are limited. This study aimed to explore network connectivity alterations that may help enhance our understanding of damage-associated processes in T2DM. MRI data were analyzed from 82 patients with T2DM and 66 normal controls. Clinical, biochemical, and neuropsychological assessments were conducted in parallel with resting-state functional magnetic resonance imaging, and the cognitive status of the patients was assessed using the Montreal Cognitive Assessment-B (MoCA-B) score. Independent component analysis revealed a positive correlation between the salience network and the visual network and a negative connection between the left executive control network and the default mode network in patients with T2DM. The differences in dynamic brain network connectivity were observed in the precuneus, visual, and executive control networks. Internal network connectivity was primarily affected in the thalamus, inferior parietal lobe, and left precuneus. Hemoglobin A1c level, body mass index, MoCA-B score, and grooved pegboard (R) assessments indicated significant differences between the two groups (p < 0.05). Our findings show that key changes in functional connectivity in diabetes occur in the precuneus and executive control networks that evolve before patients develop cognitive deficits. In addition, the current study provides useful information about the role of the thalamus, inferior parietal lobe, and precuneus, which might be potential biomarkers for predicting the clinical progression, assessing the cognitive function, and further understanding the neuropathology of T2DM.

9.
Front Neurol ; 12: 697349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566841

RESUMO

Background: Structural and functional brain alterations that underlie cognitive decline have been observed in elderly adults with type 2 diabetes mellitus (T2DM); however, whether these alterations can be observed in patients with early-onset T2DM remains unclear. Therefore, we aimed to describe the abnormalities in brain volume and functional patterns in patients with early-onset T2DM in the present study. Methods: We enrolled 20 patients with early-onset T2DM and 20 healthy controls (HCs). Changes in brain volume were assessed using voxel-based morphology (VBM), while changes in brain function were assessed using degree centrality (DC) and functional connectivity (FC). Results: Compared to HCs, patients with early-onset T2DM exhibited gray matter reductions in the left orbital superior, middle, and inferior frontal gyri as well as the right superior frontal gyrus. The gray matter reductions in the right superior frontal gyrus were negatively associated with the urine albumin to creatinine ratio. Furthermore, increased DC values were observed in the left superior temporal gyrus, left Heschl gyrus, and left hippocampus in patients with early-onset T2DM. An FC analysis of these regions revealed elevated connectivity in the right precuneus, left inferior parietal gyrus, left Heschl gyrus, bilateral post-central gyrus, bilateral insula, bilateral superior temporal gyrus, and bilateral medial and paracingulate gyrus. Furthermore, the FC of the hubs to the superior temporal gyrus, insula, and Heschl gyrus was increased and positively correlated with trail making test-B. Conclusion: Decreased local gray matter volume and increased DC and FC may represent the neurobiological mechanism underlying cognitive dysfunction in patients with early-onset T2DM.

10.
Front Neurosci ; 15: 728874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764850

RESUMO

Diabetes with high blood glucose levels may damage the brain nerves and thus increase the risk of dementia. Previous studies have shown that dementia can be reflected in altered brain structure, facilitating computer-aided diagnosis of brain diseases based on structural magnetic resonance imaging (MRI). However, type 2 diabetes mellitus (T2DM)-mediated changes in the brain structures have not yet been studied, and only a few studies have focused on the use of brain MRI for automated diagnosis of T2DM. Hence, identifying MRI biomarkers is essential to evaluate the association between changes in brain structure and T2DM as well as cognitive impairment (CI). The present study aims to investigate four methods to extract features from MRI, characterize imaging biomarkers, as well as identify subjects with T2DM and CI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA