RESUMO
In response to the 2022 outbreak of mpox driven by unprecedented human-to-human monkeypox virus (MPXV) transmission, we designed BNT166, aiming to create a highly immunogenic, safe, accessible, and scalable next-generation vaccine against MPXV and related orthopoxviruses. To address the multiple viral forms and increase the breadth of immune response, two candidate multivalent mRNA vaccines were evaluated pre-clinically: a quadrivalent vaccine (BNT166a; encoding the MPXV antigens A35, B6, M1, H3) and a trivalent vaccine (BNT166c; without H3). Both candidates induced robust T cell responses and IgG antibodies in mice, including neutralizing antibodies to both MPXV and vaccinia virus. In challenge studies, BNT166a and BNT166c provided complete protection from vaccinia, clade I, and clade IIb MPXV. Furthermore, immunization with BNT166a was 100% effective at preventing death and at suppressing lesions in a lethal clade I MPXV challenge in cynomolgus macaques. These findings support the clinical evaluation of BNT166, now underway (NCT05988203).
Assuntos
Monkeypox virus , Mpox , Vacina Antivariólica , Animais , Humanos , Camundongos , Macaca fascicularis , Monkeypox virus/genética , Mpox/imunologia , Mpox/prevenção & controle , Vacinas Combinadas , Vaccinia virus/genéticaRESUMO
mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by â¼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause acute respiratory disease and multiorgan failure. Finding human host factors that are essential for SARS-CoV-2 infection could facilitate the formulation of treatment strategies. Using a human kidney cell line-HK-2-that is highly susceptible to SARS-CoV-2, we performed a genome-wide RNAi screen and identified virus dependency factors (VDFs), which play regulatory roles in biological pathways linked to clinical manifestations of SARS-CoV-2 infection. We found a role for a secretory form of SARS-CoV-2 receptor, soluble angiotensin converting enzyme 2 (sACE2), in SARS-CoV-2 infection. Further investigation revealed that SARS-CoV-2 exploits receptor-mediated endocytosis through interaction between its spike with sACE2 or sACE2-vasopressin via AT1 or AVPR1B, respectively. Our identification of VDFs and the regulatory effect of sACE2 on SARS-CoV-2 infection shed insight into pathogenesis and cell entry mechanisms of SARS-CoV-2 as well as potential treatment strategies for COVID-19.
Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vasopressinas/imunologia , Internalização do Vírus , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Humanos , Ligação ProteicaRESUMO
Ciliates are a diverse group of unicellular eukaryotes that vary widely in size, shape, body plan, and ecological niche. Here, we review recent research advances achieved with ciliate models. Studies on patterning and regeneration have been revived in the giant ciliate Stentor, facilitated by modern omics methods. Cryo-electron microscopy and tomography have revolutionized the structural study of complex macromolecules such as telomerase, ribozymes, and axonemes. DNA elimination, gene scrambling, and mating type determination have been deciphered, revealing interesting adaptations of processes that have parallels in other kingdoms of life. Studies of common eukaryotic processes, such as intracellular trafficking, meiosis, and histone modification, reveal conservation as well as unique adaptations in these organisms that are evolutionarily distant from other models. Continual improvement of genetic and molecular tools makes ciliates accessible models for all levels of education and research. Such advances open new avenues of research and highlight the importance of ciliate research.
Assuntos
Cilióforos , RNA Catalítico , Telomerase , Biologia , Cilióforos/genética , Microscopia CrioeletrônicaRESUMO
B.1.351 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant most resistant to antibody neutralization. We demonstrate how the dose and number of immunizations influence protection. Nonhuman primates received two doses of 30 or 100 µg of Moderna's mRNA-1273 vaccine, a single immunization of 30 µg, or no vaccine. Two doses of 100 µg of mRNA-1273 induced 50% inhibitory reciprocal serum dilution neutralizing antibody titers against live SARS-CoV-2 p.Asp614Gly and B.1.351 of 3,300 and 240, respectively. Higher neutralizing responses against B.1.617.2 were also observed after two doses compared to a single dose. After challenge with B.1.351, there was ~4- to 5-log10 reduction of viral subgenomic RNA and low to undetectable replication in bronchoalveolar lavages in the two-dose vaccine groups, with a 1-log10 reduction in nasal swabs in the 100-µg group. These data establish that a two-dose regimen of mRNA-1273 will be critical for providing upper and lower airway protection against major variants of concern.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Primatas/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Masculino , Mesocricetus , Primatas/virologia , RNA Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Células Vero , Carga Viral/métodosRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.
Assuntos
Proteína Supressora de Tumor p53 , Humanos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo Celular , Divisão Celular , Proteína Supressora de Tumor p53/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismoRESUMO
PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.
Assuntos
ADP-Ribosilação , Interferons , Poli(ADP-Ribose) Polimerases , Ubiquitina-Proteína Ligases , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Interferons/metabolismo , Ubiquitinação , Células HEK293 , SARS-CoV-2/metabolismo , Transdução de Sinais , COVID-19/virologia , COVID-19/metabolismo , Proteínas de NeoplasiasRESUMO
Non-volatile magnetic random-access memories (MRAMs), such as spin-transfer torque MRAM and next-generation spin-orbit torque MRAM, are emerging as key to enabling low-power technologies, which are expected to spread over large markets from embedded memories to the Internet of Things. Concurrently, the development and performances of devices based on two-dimensional van der Waals heterostructures bring ultracompact multilayer compounds with unprecedented material-engineering capabilities. Here we provide an overview of the current developments and challenges in regard to MRAM, and then outline the opportunities that can arise by incorporating two-dimensional material technologies. We highlight the fundamental properties of atomically smooth interfaces, the reduced material intermixing, the crystal symmetries and the proximity effects as the key drivers for possible disruptive improvements for MRAM at advanced technology nodes.
RESUMO
Ferroptosis is a non-apoptotic form of regulated cell death that is triggered by the discoordination of regulatory redox mechanisms culminating in massive peroxidation of polyunsaturated phospholipids. Ferroptosis inducers have shown considerable effectiveness in killing tumour cells in vitro, yet there has been no obvious success in experimental animal models, with the notable exception of immunodeficient mice1,2. This suggests that the effect of ferroptosis on immune cells remains poorly understood. Pathologically activated neutrophils (PMNs), termed myeloid-derived suppressor cells (PMN-MDSCs), are major negative regulators of anti-tumour immunity3-5. Here we found that PMN-MDSCs in the tumour microenvironment spontaneously die by ferroptosis. Although decreasing the presence of PMN-MDSCs, ferroptosis induces the release of oxygenated lipids and limits the activity of human and mouse T cells. In immunocompetent mice, genetic and pharmacological inhibition of ferroptosis abrogates suppressive activity of PMN-MDSCs, reduces tumour progression and synergizes with immune checkpoint blockade to suppress the tumour growth. By contrast, induction of ferroptosis in immunocompetent mice promotes tumour growth. Thus, ferroptosis is a unique and targetable immunosuppressive mechanism of PMN-MDSCs in the tumour microenvironment that can be pharmacologically modulated to limit tumour progression.
Assuntos
Neoplasias , Humanos , Camundongos , Animais , Microambiente TumoralRESUMO
White adipose tissue, once regarded as morphologically and functionally bland, is now recognized to be dynamic, plastic and heterogenous, and is involved in a wide array of biological processes including energy homeostasis, glucose and lipid handling, blood pressure control and host defence1. High-fat feeding and other metabolic stressors cause marked changes in adipose morphology, physiology and cellular composition1, and alterations in adiposity are associated with insulin resistance, dyslipidemia and type 2 diabetes2. Here we provide detailed cellular atlases of human and mouse subcutaneous and visceral white fat at single-cell resolution across a range of body weight. We identify subpopulations of adipocytes, adipose stem and progenitor cells, vascular and immune cells and demonstrate commonalities and differences across species and dietary conditions. We link specific cell types to increased risk of metabolic disease and provide an initial blueprint for a comprehensive set of interactions between individual cell types in the adipose niche in leanness and obesity. These data comprise an extensive resource for the exploration of genes, traits and cell types in the function of white adipose tissue across species, depots and nutritional conditions.
Assuntos
Tecido Adiposo Branco , Atlas como Assunto , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Doenças Metabólicas , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Obesidade/metabolismoRESUMO
Transcriptome-wide association studies (TWASs) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have focused on the regulatory effects of risk-associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWASs of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole-genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents an in-depth look into the role of trans eQTLs in the complex molecular mechanisms underlying these diseases.
Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias Ovarianas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Teorema de Bayes , Transcriptoma , Regulação Neoplásica da Expressão GênicaRESUMO
Reduction of amyloid beta (Aß) has been shown to be effective in treating Alzheimer's disease (AD), but the underlying assumption that neurons are the main source of pathogenic Aß is untested. Here, we challenge this prevailing belief by demonstrating that oligodendrocytes are an important source of Aß in the human brain and play a key role in promoting abnormal neuronal hyperactivity in an AD knock-in mouse model. We show that selectively suppressing oligodendrocyte Aß production improves AD brain pathology and restores neuronal function in the mouse model in vivo. Our findings suggest that targeting oligodendrocyte Aß production could be a promising therapeutic strategy for treating AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios , Oligodendroglia , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Técnicas de Introdução de Genes , Neurônios/metabolismo , Oligodendroglia/metabolismoRESUMO
Isoprenoids are vital for all organisms, in which they maintain membrane stability and support core functions such as respiration1. IspH, an enzyme in the methyl erythritol phosphate pathway of isoprenoid synthesis, is essential for Gram-negative bacteria, mycobacteria and apicomplexans2,3. Its substrate, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), is not produced in metazoans, and in humans and other primates it activates cytotoxic Vγ9Vδ2 T cells at extremely low concentrations4-6. Here we describe a class of IspH inhibitors and refine their potency to nanomolar levels through structure-guided analogue design. After modification of these compounds into prodrugs for delivery into bacteria, we show that they kill clinical isolates of several multidrug-resistant bacteria-including those from the genera Acinetobacter, Pseudomonas, Klebsiella, Enterobacter, Vibrio, Shigella, Salmonella, Yersinia, Mycobacterium and Bacillus-yet are relatively non-toxic to mammalian cells. Proteomic analysis reveals that bacteria treated with these prodrugs resemble those after conditional IspH knockdown. Notably, these prodrugs also induce the expansion and activation of human Vγ9Vδ2 T cells in a humanized mouse model of bacterial infection. The prodrugs we describe here synergize the direct killing of bacteria with a simultaneous rapid immune response by cytotoxic γδ T cells, which may limit the increase of antibiotic-resistant bacterial populations.
Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/imunologia , Ativação Linfocitária/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Meia-Vida , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Oxirredutases/deficiência , Oxirredutases/genética , Oxirredutases/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Especificidade por Substrato , Suínos/sangue , Linfócitos T Citotóxicos/imunologiaRESUMO
PD1 blockade therapy, harnessing the cytotoxic potential of CD8+ T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8+ T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8+ T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8+ T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8+ T cells, revealed that CD38-expressing CD8+ T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8+ T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8+ T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8+ T cells elevated intracellular Ca2+ levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8+ T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Subpopulações de Linfócitos T/metabolismoRESUMO
BACKGROUND: Severe tricuspid regurgitation is a debilitating condition that is associated with substantial morbidity and often with poor quality of life. Decreasing tricuspid regurgitation may reduce symptoms and improve clinical outcomes in patients with this disease. METHODS: We conducted a prospective randomized trial of percutaneous tricuspid transcatheter edge-to-edge repair (TEER) for severe tricuspid regurgitation. Patients with symptomatic severe tricuspid regurgitation were enrolled at 65 centers in the United States, Canada, and Europe and were randomly assigned in a 1:1 ratio to receive either TEER or medical therapy (control). The primary end point was a hierarchical composite that included death from any cause or tricuspid-valve surgery; hospitalization for heart failure; and an improvement in quality of life as measured with the Kansas City Cardiomyopathy Questionnaire (KCCQ), with an improvement defined as an increase of at least 15 points in the KCCQ score (range, 0 to 100, with higher scores indicating better quality of life) at the 1-year follow-up. The severity of tricuspid regurgitation and safety were also assessed. RESULTS: A total of 350 patients were enrolled; 175 were assigned to each group. The mean age of the patients was 78 years, and 54.9% were women. The results for the primary end point favored the TEER group (win ratio, 1.48; 95% confidence interval, 1.06 to 2.13; P = 0.02). The incidence of death or tricuspid-valve surgery and the rate of hospitalization for heart failure did not appear to differ between the groups. The KCCQ quality-of-life score changed by a mean (±SD) of 12.3±1.8 points in the TEER group, as compared with 0.6±1.8 points in the control group (P<0.001). At 30 days, 87.0% of the patients in the TEER group and 4.8% of those in the control group had tricuspid regurgitation of no greater than moderate severity (P<0.001). TEER was found to be safe; 98.3% of the patients who underwent the procedure were free from major adverse events at 30 days. CONCLUSIONS: Tricuspid TEER was safe for patients with severe tricuspid regurgitation, reduced the severity of tricuspid regurgitation, and was associated with an improvement in quality of life. (Funded by Abbott; TRILUMINATE Pivotal ClinicalTrials.gov number, NCT03904147.).
Assuntos
Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Tricúspide , Idoso , Feminino , Humanos , Masculino , Cateterismo Cardíaco/efeitos adversos , Cateterismo Cardíaco/métodos , Insuficiência Cardíaca/etiologia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/métodos , Estudos Prospectivos , Qualidade de Vida , Resultado do Tratamento , Insuficiência da Valva Tricúspide/cirurgiaRESUMO
BACKGROUND: Data from a 5-year follow-up of outcomes after transcatheter edge-to-edge repair of severe mitral regurgitation, as compared with outcomes after maximal doses of guideline-directed medical therapy alone, in patients with heart failure are now available. METHODS: We randomly assigned patients with heart failure and moderate-to-severe or severe secondary mitral regurgitation who remained symptomatic despite the use of maximal doses of guideline-directed medical therapy to undergo transcatheter edge-to-edge repair plus receive medical therapy (device group) or to receive medical therapy alone (control group) at 78 sites in the United States and Canada. The primary effectiveness end point was all hospitalizations for heart failure through 2 years of follow-up. The annualized rate of all hospitalizations for heart failure, all-cause mortality, the risk of death or hospitalization for heart failure, and safety, among other outcomes, were assessed through 5 years. RESULTS: Of the 614 patients enrolled in the trial, 302 were assigned to the device group and 312 to the control group. The annualized rate of hospitalization for heart failure through 5 years was 33.1% per year in the device group and 57.2% per year in the control group (hazard ratio, 0.53; 95% confidence interval [CI], 0.41 to 0.68). All-cause mortality through 5 years was 57.3% in the device group and 67.2% in the control group (hazard ratio, 0.72; 95% CI, 0.58 to 0.89). Death or hospitalization for heart failure within 5 years occurred in 73.6% of the patients in the device group and in 91.5% of those in the control group (hazard ratio, 0.53; 95% CI, 0.44 to 0.64). Device-specific safety events within 5 years occurred in 4 of 293 treated patients (1.4%), with all the events occurring within 30 days after the procedure. CONCLUSIONS: Among patients with heart failure and moderate-to-severe or severe secondary mitral regurgitation who remained symptomatic despite guideline-directed medical therapy, transcatheter edge-to-edge repair of the mitral valve was safe and led to a lower rate of hospitalization for heart failure and lower all-cause mortality through 5 years of follow-up than medical therapy alone. (Funded by Abbott; COAPT ClinicalTrials.gov number, NCT01626079.).
Assuntos
Cateterismo Cardíaco , Insuficiência Cardíaca , Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral , Humanos , Cateterismo Cardíaco/efeitos adversos , Cateterismo Cardíaco/métodos , Seguimentos , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/cirurgia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/métodos , Insuficiência da Valva Mitral/etiologia , Insuficiência da Valva Mitral/cirurgia , Resultado do TratamentoRESUMO
The regulation of virulence in plant-pathogenic fungi has emerged as a key area of importance underlying host infections. Recent work has highlighted individual transcription factors (TFs) that serve important roles. A prominent example is PnPf2, a member of the Zn2Cys6 family of fungal TFs, which controls the expression of effectors and other virulence-associated genes in Parastagonospora nodorum during infection of wheat. PnPf2 orthologues are similarly important for other major fungal pathogens during infection of their respective host plants, and have also been shown to control polysaccharide metabolism in model saprophytes. In each case, the direct genomic targets and associated regulatory mechanisms were unknown. Significant insight was made here by investigating PnPf2 through chromatin-immunoprecipitation (ChIP) and mutagenesis approaches in P. nodorum. Two distinct binding motifs were characterised as positive regulatory elements and direct PnPf2 targets identified. These encompass known effectors and other components associated with the P. nodorum pathogenic lifestyle, such as carbohydrate-active enzymes and nutrient assimilators. The results support a direct involvement of PnPf2 in coordinating virulence on wheat. Other prominent PnPf2 targets included TF-encoding genes. While novel functions were observed for the TFs PnPro1, PnAda1, PnEbr1 and the carbon-catabolite repressor PnCreA, our investigation upheld PnPf2 as the predominant transcriptional regulator characterised in terms of direct and specific coordination of virulence on wheat, and provides important mechanistic insights that may be conserved for homologous TFs in other fungi.