Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Front Chem ; 12: 1359191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633986

RESUMO

Utilization of organic phosphates and insoluble phosphates for the gradual generation of plant-available phosphorus (P) is the only sustainable solution for P fertilization. Enzymatic conversions are one of the best sustainable routes for releasing P to soil. Phosphatase enzyme aids in solubilizing organic and insoluble phosphates to plant-available P. We herein report the preparation of highly functional chitosan beads co-immobilized with acid phosphatase and alkaline phosphatase enzymes via a glutaraldehyde linkage. The dual enzyme co-immobilized chitosan beads were characterized using Fourier-transform infrared (FTIR), thermogravimetric (TGA), and scanning electron microscopy-energy dispersive x-ray (SEM-EDX) analyses to confirm the immobilization. The co-immobilized system was found to be active for a broader pH range of ∼4-10 than the individually bound enzymes and mixed soluble enzymes. The bound matrix exhibited pH optima at 6 and 9, respectively, for acid and alkaline phosphatase and a temperature optimum at 50°C. The phosphate-solubilizing abilities of the chitosan-enzyme derivatives were examined using insoluble tri-calcium phosphate (TCP) for wide pH conditions of 5.5, 7, and 8.5 up to 25 days. The liberation of phosphate was highest (27.20 mg/mL) at pH 5.5 after the defined period. The residual soil phosphatase activity was also monitored after 7 days of incubation with CBE for three different soils of pH ∼5.5, 7, and 8.5. The residual phosphatase activity increased for all the soils after applying the CBE. The germination index of the Oryza sativa (rice) plant was studied using different pH buffer media upon the application of the CBE in the presence of tri-calcium phosphate as a phosphate source. Overall, the dual-enzyme co-immobilized chitosan beads were highly effective over a wide pH range for generating plant-available phosphates from insoluble phosphates. The chitosan-enzyme derivative holds the potential to be used for sustainable phosphorus fertilization with different insoluble and organic phosphorus sources.

2.
Sci Total Environ ; 920: 170737, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340860

RESUMO

The study investigated the influence of a National Highway (NH) traversing tea estates (TEs) on heavy metal (HM) contamination in the top soils of Upper Assam, India. The dispersion and accumulation of six HMs, viz. cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn), within tea-growing soils were assessed using diverse indices: contamination factor (CF), degree of contamination (DC), enrichment factor (EF), geo-accumulation index (Igeo), modified degree of contamination (MDC), Nemerow pollution index (PINemerow), pollution load index (PLI), potential ecological risk factor (Eri), and potential ecological risk index (RI). The order of HM prevalence was Fe > Mn > Zn > Ni > Cu > Cd. Elevated Cd levels near the NH prompted immediate attention, while Cd and Zn showed moderate pollution in CF, EF, and RI. The remaining metals posed minimal individual risk (Eri< 40), resulting in an overall contamination range of "nil to shallow," signifying slight contamination from the studied metals. From MDC values for investigated metals, it was found to be "zero to very low degree of contamination" at all locations except the vicinity of NH. Soil pollution, as determined by PLI, indicated unpolluted soils in both districts, yet PINemerow values indicated slight pollution. The statistical analysis revealed that there is a significant decrease in most of the indices of HM as the distance from NH increases. The application of multivariate statistical techniques namely Principal Component Analysis and Cluster Analysis showed the presence of three distinct homogenous groups of distances based on different indices. This investigation underscores NH-associated anthropogenic effects on TE soil quality due to HM deposition, warranting proactive mitigation measures.


Assuntos
Camellia sinensis , Metais Pesados , Poluentes do Solo , Solo , Cádmio/análise , Medição de Risco , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluição Ambiental/análise , Zinco/análise , Manganês/análise , Níquel/análise , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA