Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Langmuir ; 33(17): 4198-4206, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28398737

RESUMO

Various forms of carbon are known to perform well as biomaterials in a variety of applications and an improved understanding of their interactions with biomolecules, cells, and tissues is of interest for improving and tailoring their performance. Nanoplasmonic sensing (NPS) has emerged as a powerful technique for studying the thermodynamics and kinetics of interfacial reactions. In this work, the in situ adsorption of two proteins, bovine serum albumin and fibrinogen, were studied at carbon surfaces with differing chemical and optical properties using nanoplasmonic sensors. The carbon material was deposited as a thin film onto NPS surfaces consisting of 100 nm Au nanodisks with a localized plasmon absorption peak in the visible region. Carbon films were fully characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and spectroscopic ellipsometry. Two types of material were investigated: amorphous carbon (a-C), with high graphitic content and high optical absorptivity, and hydrogenated amorphous carbon (a-C:H), with low graphitic content and high optical transparency. The optical response of the Au/carbon NPS elements was modeled using the finite difference time domain (FDTD) method, yielding simulated analytical sensitivities that compare well with those observed experimentally at the two carbon surfaces. Protein adsorption was investigated on a-C and a-C:H, and the protein layer thicknesses were obtained from FDTD simulations of the expected response, yielding values in the 1.8-3.3 nm range. A comparison of the results at a-C and a-C:H indicates that in both cases fibrinogen layers are thicker than those formed by albumin by up to 80%.


Assuntos
Carbono/química , Fibrinogênio/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Ouro/química , Teste de Materiais/métodos , Ressonância de Plasmônio de Superfície/métodos , Propriedades de Superfície
2.
Nanotechnology ; 28(11): 115401, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28140370

RESUMO

Non-radiative energy transfer (NRET) can be an efficient process of benefit to many applications including photovoltaics, sensors, light emitting diodes and photodetectors. Combining the remarkable optical properties of quantum dots (QDs) with the electrical properties of quantum wells (QWs) allows for the formation of hybrid devices which can utilize NRET as a means of transferring absorbed optical energy from the QDs to the QW. Here we report on plasmon-enhanced NRET from semiconductor nanocrystal QDs to a QW. Ag nanoparticles in the form of colloids and ordered arrays are used to demonstrate plasmon-mediated NRET from QDs to QWs with varying top barrier thicknesses. Plasmon-mediated energy transfer (ET) efficiencies of up to ∼25% are observed with the Ag colloids. The distance dependence of the plasmon-mediated ET is found to follow the same d -4 dependence as the direct QD to QW ET. There is also evidence for an increase in the characteristic distance of the interaction, thus indicating that it follows a Förster-like model with the Ag nanoparticle-QD acting as an enhanced donor dipole. Ordered Ag nanoparticle arrays display plasmon-mediated ET efficiencies up to ∼21%. To explore the tunability of the array system, two arrays with different geometries are presented. It is demonstrated that changing the geometry of the array allows a transition from overall quenching of the acceptor QW emission to enhancement, as well as control of the competition between the QD donor quenching and ET rates.

3.
Nanoscale ; 8(42): 18170-18179, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27740658

RESUMO

A range of seven different Ag plasmonic arrays formed using nanostructures of varying shape, size and gap were fabricated using helium-ion lithography (HIL) on an InGaN/GaN quantum well (QW) substrate. The influence of the array geometry on plasmon-enhanced Förster resonance energy transfer (FRET) from a single InGaN QW to a ∼80 nm layer of CdSe/ZnS quantum dots (QDs) embedded in a poly(methyl methacrylate) (PMMA) matrix is investigated. It is shown that the energy transfer efficiency is strongly dependent on the array properties and an efficiency of ∼51% is observed for a nanoring array. There were no signatures of FRET in the absence of the arrays. The QD acceptor layer emission is highly sensitive to the array geometry. A model was developed to confirm that the increase in the QD emission on the QW substrate compared with a GaN substrate can be attributed solely to plasmon-enhanced FRET. The individual contributions of direct enhancement of the QD layer emission by the array and the plasmon-enhanced FRET are separated out, with the QD emission described by the product of an array emission factor and an energy transfer factor. It is shown that while the nanoring geometry results in an energy transfer factor of ∼1.7 the competing quenching by the array, with an array emission factor of ∼0.7, results in only an overall gain of ∼14% in the QD emission. The QD emission was enhanced by ∼71% for a nanobox array, resulting from the combination of a more modest energy transfer factor of 1.2 coupled with an array emission factor of ∼1.4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA