Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Autism Res ; 16(1): 84-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349875

RESUMO

Resting state fMRI (rs-fMRI) provides an excellent platform for examining the amplitude of low frequency fluctuations (ALFF) and fractional amplitude of low frequency fluctuations (fALFF), which are key indices of brain functioning. However, ALFF and fALFF have been used only sporadically to study autism. rs-fMRI data from 69 children (40 autistic, mean age = 8.47 ± 2.20 years; age range: 5.2 to 13.2; and 29 non-autistic, mean age = 9.02 ± 1.97 years; age range 5.9 to 12.9) were obtained from the Autism Brain Imaging Data Exchange (ABIDE II). ALFF and fALFF were measured using CONN connectivity toolbox and SPM12, at whole-brain & network-levels. A two-sampled t-test and a 2 Group (autistic, non-autistic) × 7 Networks ANOVA were conducted to test group differences in ALFF and fALFF. The whole-brain analysis identified significantly reduced ALFF values for autistic participants in left parietal opercular cortex, precuneus, and right insula. At the network level, there was a significant effect of diagnostic group and brain network on ALFF values, and only significant effect of network, not group, on fALFF values. Regression analyses indicated a significant effect of age on ALFF values of certain networks in autistic participants. Such intrinsically different network-level responses in autistic participants may have implications for task-level recruitment and synchronization of brain areas, which may in turn impact optimal cognitive functioning. Moreover, differences in low frequency fluctuations of key networks, such as the DMN and SN, may underlie alterations in brain responses in autism that are frequently reported in the literature.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Humanos , Criança , Pré-Escolar , Adolescente , Imageamento por Ressonância Magnética/métodos , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cognição
2.
Brain Connect ; 13(9): 528-540, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522594

RESUMO

Background: Autism and attention-deficit/hyperactivity disorder (ADHD) are comorbid neurodevelopmental disorders that share common and distinct neurobiological mechanisms, with disrupted brain connectivity patterns being a hallmark feature of both conditions. It is challenging to gain a mechanistic understanding of the underlying disorder, because brain connectivity changes in autism and ADHD are heterogeneous. Objectives: The present resting state functional MRI (rs-fMRI) study focuses on investigating the shared and distinct resting state-fMRI connectivity (rsFC) patterns in autistic and ADHD adults using multi-voxel pattern analysis (MVPA). By identifying spatial patterns of fMRI activity across a given time course, MVPA is an innovative and powerful method for generating seed regions of interest (ROIs) without a priori hypotheses. Methods: We performed a data-driven, whole-brain, connectome-wide MVPA on rs-fMRI data collected from 15 autistic, 19 ADHD, and 15 neurotypical (NT) young adults. Results: MVPA identified cerebellar vermis 9, precuneus, and the right cerebellum VI for autistic versus NT, right inferior frontal gyrus and vermis 9 for ADHD versus NT, and right dorsolateral prefrontal cortex for autistic versus ADHD as significant clusters. Post hoc seed-to-voxel analyses using these clusters as seed ROIs were performed for further characterization of group differences. The cerebellum VI, vermis, and precuneus in autistic adults, and the vermis and frontal regions in ADHD showed different connectivity patterns in comparison with NT. Conclusions: The study characterizes the rsFC profile of cerebellum with key cortical areas in autism and ADHD, and it emphasizes the importance of studying the role of the functional connectivity of the cerebellum in neurodevelopmental disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Autístico , Adulto Jovem , Humanos , Encéfalo/diagnóstico por imagem , Transtorno Autístico/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal
3.
Front Neurosci ; 17: 1279909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161799

RESUMO

One of the earliest neurobiological findings in autism has been the differences in the thalamocortical pathway connectivity, suggesting the vital role thalamus plays in human experience. The present functional MRI study investigated resting-state functional connectivity of the thalamus in 49 (autistic, ADHD, and neurotypical) young adults. All participants underwent structural MRI and eyes-open resting state functional MRI scans. After preprocessing the imaging data using Conn's connectivity toolbox, a seed-based functional connectivity analysis was conducted using bilateral thalamus as primary seeds. Autistic participants showed stronger thalamic connectivity, relative to ADHD and neurotypical participants, between the right thalamus and right precentral gyrus, right pars opercularis-BA44, right postcentral gyrus, and the right superior parietal lobule (RSPL). Autistic participants also showed significantly increased connectivity between the left thalamus and the right precentral gyrus. Furthermore, regression analyses revealed a significant relationship between autistic traits and left thalamic-precentral connectivity (R2 = 0.1113), as well as between autistic traits and right postcentral gyrus and RSPL connectivity (R2 = 0.1204) in autistic participants compared to ADHD. These findings provide significant insights into the role of thalamus in coordinating neural information processing and its alterations in neurodevelopmental disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA