RESUMO
The enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States. In this context, the present paper offers a constructive critique of the practices followed during the WFD implementation in Greece by pinpointing methodological weaknesses and knowledge gaps that undermine our ability to classify the ecological quality of Greek lakes. One of the pillars of WDF is a valid lake typology that sets ecological standards transcending geographic regions and national boundaries. The national typology of Greek lakes has failed to take into account essential components. WFD compliance assessments based on the descriptions of phytoplankton communities are oversimplified and as such should be revisited. Exclusion of most chroococcal species from the analysis of cyanobacteria biovolume in Greek lakes/reservoirs and most reservoirs in Spain, Portugal, and Cyprus is not consistent with the distribution of those taxa in lakes. Similarly, the total biovolume reference values and the indices used in classification schemes reflect misunderstandings of WFD core principles. This hampers the comparability of ecological status across Europe and leads to quality standards that are too relaxed to provide an efficient target for the protection of Greek/transboundary lakes such as the ancient Lake Megali Prespa.
Assuntos
Lagos , Fitoplâncton , Monitoramento Ambiental , Europa (Continente) , Grécia , Região do Mediterrâneo , Portugal , Espanha , ÁguaRESUMO
Studies assessing the effects of anthropogenic inputs on the taxonomic and functional diversity of bacterioplankton communities in lotic ecosystems are limited. Here, we applied 16S rRNA gene amplicon and whole-genome shotgun sequencing to examine the microbial diversity in samples from the Kalamas River (Northwest Greece), a mid-size river that runs through agricultural and NATURA-protected areas, but also receives urban sewage from a large city through a manmade ditch. Samples from three different locations between the exit of the ditch and the estuary, during three different months showed that temporal differences of taxonomic and functional diversity were more pronounced than spatial ones, and <1% of total taxa were shared among all samples, revealing a highly dynamic ecosystem. Comparisons of gene diversity with other aquatic habitats showed that only the high flow winter samples resembled more to freshwater environments while samples during the decreased water flow months were dominated by sewage inputs and soil-related organisms. Notably, microbial human gut signals were detectable over background freshwater and soil/runoff related signals, even at tens of kilometers downstream the city. These findings revealed the significance of allochthonous inputs on the composition and dynamics of river bacterial communities, and highlighted the potential of metagenomics for source tracking purposes.
Assuntos
Bactérias/genética , Biodiversidade , Estuários , Rios/microbiologia , Microbiologia da Água , Ecossistema , Água Doce , Grécia , Humanos , Metagenômica , Plâncton/genética , RNA Ribossômico 16S/genética , Estações do AnoRESUMO
The sediment microbiota of the Mediterranean deep-sea anoxic hypersaline basins (DHABs) are understudied relative to communities in the brines and halocline waters. In this study, the active fraction of the prokaryotic community in the halocline sediments of L' Atalante, Urania, and Discovery DHABs was investigated based on extracted total RNA and 454 pyrosequencing of the 16S rRNA gene. Bacterial and archaeal communities were different in the sediments underlying the halocline waters of the three habitats, reflecting the unique chemical settings of each basin. The relative abundance of unique operational taxonomic units (OTUs) was also different between deep-sea control sediments and sediments underlying DHAB haloclines, suggesting adaptation to the steep DHAB chemical gradients. Only a few OTUs were affiliated to known bacterial halophilic and/or anaerobic groups. Many OTUs, including some of the dominant ones, were related to aerobic taxa. Archaea were detected only in few halocline samples, with lower OTU richness relative to Bacteria, and were dominated by taxa associated with methane cycling. This study suggests that, while metabolically active prokaryotic communities appear to be present in sediments underlying the three DHABs investigated, their diversity and activity are likely to be more reduced in sediments underlying the brines.
Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Tolerância ao Sal , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Sequência de Bases , Mar Mediterrâneo , Dados de Sequência Molecular , RNA Ribossômico 16S/genéticaRESUMO
The function of recirculating aquaculture systems (RAS) relies on microbial communities, which convert toxic, fish-excreted ammonia into substances that can provide nutrients to plants as in the case of aquaponics systems. In the present study, heterotrophic protist communities of experimental sea water RAS and freshwater aquaponics systems were investigated using microscopy to characterize their diversity, natural abundance, and potential growth rates. Heterotrophic protist abundance was low (732 ± 21 to 5451 ± 118 ciliates L-1 and 58 ± 8 to 147 ± 18 nanoflagellates mL-1 in the aquaponics system and 78 ± 28 to 203 ± 48 ciliates L-1 in the RAS), which is in line with values typically reported for rivers. In the aquaponics system, ciliates grew faster in the fish rearing tanks (1.9 ± 0.01 to 1.21 ± 0.03 d-1 compared to 0.54 ± 0.03 to 0.79 ± 0.05 d-1 in the other compartments), while heterotrophic nanoflagellates grew slower in drain tanks downstream of the hydroponics compartment (0.5 ± 0.3 to 1.37 ± 0.05 d-1 and 4.09 ± 0.11 d-1 to 6.03 ± 0.34 d-1in the other compartments). Results indicated distinct niches and reduced microeukaryotic diversity at the end of the system's operation cycle.
Assuntos
Aquicultura , Biodiversidade , Cilióforos , Cilióforos/crescimento & desenvolvimento , Cilióforos/fisiologia , Microscopia , Água do Mar/parasitologia , Água Doce/parasitologiaRESUMO
Microbes are ubiquitous and provide numerous services to humans and our planet. However, a query arises as to whether these microbial services are valued by the general public especially after unprecedented conditions like the COVID-19 pandemic. In this context a survey was conducted to investigate the concept of microbe in Greece. Thematic analysis of 672 anonymous responses (age range 4-75yo) received for the open-ended prompt "What is the first thing that comes to mind when you hear the word microbe?" revealed five thematic categories: Negative emotions, Fuzzy associations, Biology, Entities and Health. Almost 80% of responses fell under "Biology" and "Health" and the general pattern of answers was the same across all age groups. Microbes took a variety of forms in the minds of respondents, however, the concept of "microbe" seems to be more unshaped at younger ages (4-11yo), as revealed in children's language choices. Overall, the often-negative perception of microorganisms seems to be confirmed in this study. Although this research was limited to participants from Greece, it remains relevant to other countries around the world as well. We discuss the reasons behind this negative perception and offer suggestions for reversing it.
Assuntos
COVID-19 , Alfabetização , Criança , Humanos , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Grécia , Pandemias , COVID-19/epidemiologiaRESUMO
Lake Karla, Greece, was dried up in 1962 and its refilling started in 2009. We examined the Cyanobacteria and unicellular eukaryotes found during two fish kill incidents, in March and April 2010, in order to detect possible causative agents. Both microscopic and molecular (16S/18S rRNA gene diversity) identification were applied. Potentially toxic Cyanobacteria included representatives of the Planktothrix and Anabaena groups. Known toxic eukaryotes or parasites related to fish kill events were Prymnesium parvum and Pfiesteria cf. piscicida, the latter being reported in an inland lake for the second time. Other potentially harmful microorganisms, for fish and other aquatic life, included representatives of Fungi, Mesomycetozoa, Alveolata, and Heterokontophyta (stramenopiles). In addition, Euglenophyta, Chlorophyta, and diatoms were represented by species indicative of hypertrophic conditions. The pioneers of L. Karla's plankton during the first months of its water refilling process included species that could cause the two observed fish kill events.
Assuntos
Doenças dos Peixes/microbiologia , Peixes/microbiologia , Plâncton/patogenicidade , Anabaena/patogenicidade , Animais , Cianobactérias/patogenicidade , Grécia , Lagos , Pfiesteria piscicida/patogenicidadeRESUMO
Colonization and succession of an epibiotic animal community on chromated copper arsenate (CCA)-treated wood were studied for 18 months in the eastern Mediterranean (Saronikos Gulf, Aegean Sea). Pine wood panels, 200 x 100 x 25 mm, impregnated with CCA at retentions of 0, 12, 24, and 48 kg m(-3) were used. The abundance or surface coverage of the most characteristic taxa (polychaetes, mollusca, crustacea bryozoa, sponges, ascidians) was measured in situ, while 12 months after submersion two panels of each retention were removed and examined in the laboratory. A total of 26 taxa were identified, among which polychaetes of the family Serpulidae dominated. The controls carried the largest number of species (17) but the lowest number of individuals. On panels with CCA retentions of 12 and 24 kg m(-3), 14 and 16 species were observed, respectively, while at 48 kg m(-3), only 9 species were found. Only the controls were affected by boring bivalves of the family Teredinidae and started to break up within 3 months of submersion. Statistically significant differences in barnacle and polychaete abundance were found between treated and untreated panels. There were no significant differences among panels treated at the three CCA loadings. Ordination by nonmetric multidimensional scaling showed a seasonal effect on the colonization of the treated panels, with the highest recruitment during the warmer months of the study.
Assuntos
Arseniatos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/efeitos dos fármacos , Poliquetos/efeitos dos fármacos , Urocordados/efeitos dos fármacos , MadeiraRESUMO
Ready-to-eat (RTE) leafy salad vegetables are considered foods that can be consumed immediately at the point of sale without further treatment. The aim of the study was to investigate the bacterial community composition of RTE salads at the point of consumption and the changes in bacterial diversity and composition associated with different household washing treatments. The bacterial microbiomes of rocket and spinach leaves were examined by means of 16S rRNA gene high-throughput sequencing. Overall, 886 Operational Taxonomic Units (OTUs) were detected in the salads' leaves. Proteobacteria was the most diverse high-level taxonomic group followed by Bacteroidetes and Firmicutes. Although they were processed at the same production facilities, rocket showed different bacterial community composition than spinach salads, mainly attributed to the different contributions of Proteobacteria and Bacteroidetes to the total OTU number. The tested household decontamination treatments proved inefficient in changing the bacterial community composition in both RTE salads. Furthermore, storage duration of the salads at refrigeration temperatures affected the microbiome, by decreasing the bacterial richness and promoting the dominance of psychrotropic bacteria. Finally, both salads were found to be a reservoir of opportunistic human pathogens, while washing methods usually applied at home proved to be inefficient in their removal.
RESUMO
Recent diversity studies have revealed that microbial communities of natural environments are dominated by species-like, sequence-discrete populations. However, how stable the sequence and gene-content diversity are within these populations and especially in highly dynamic lotic habitats remain unclear. Here we quantified the dynamics of intra-population diversity in samples spanning two years and five sites in the Kalamas River (Northwest Greece). A significant positive correlation was observed between higher intra-population sequence diversity and longer persistence over time, revealing that more diverse populations tended to represent more autochthonous (vs. allochthonous) community members. Assessment of intra-population gene-content changes caused by strain replacement or gene loss over time revealed different profiles with the majority of populations exhibiting gene-content changes close to 10% of the total genes, while one population exhibited ~21% change. The variable genes were enriched in hypothetical proteins and mobile elements, and thus, were probably functionally neutral or attributable to phage predation. A few notable exceptions to this pattern were also noted such as phototrophy-related proteins in summer vs. winter populations. Taken together, these results revealed that some freshwater genomes are remarkably dynamic, even across short time and spatial scales, and have implications for the bacterial species concept and microbial source tracking.
Assuntos
Bactérias/genética , Variação Genética , Genoma Bacteriano/genética , Microbiota/genética , Rios/microbiologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Ecossistema , Água Doce/microbiologia , Grécia , Estações do Ano , Fatores de TempoRESUMO
We investigated the population dynamics and prevailing 18S rDNA phylotypes of microeukaryotes (Assuntos
Bactérias/crescimento & desenvolvimento
, Células Eucarióticas/microbiologia
, Processos Heterotróficos
, Petróleo/microbiologia
, Biodegradação Ambiental
, Ecossistema
, Emulsificantes/química
, Modelos Biológicos
, Petróleo/metabolismo
, Filogenia
, RNA Ribossômico 18S/genética
, Água do Mar/microbiologia
, Poluentes Químicos da Água/química
, Poluentes Químicos da Água/metabolismo
RESUMO
The virological quality of surface marine and running water samples collected from Igoumenitsa gulf and Kalamas river (NW Greece) was assessed from October 2012 to September 2013. Sampling sites were exposed to different land and/or anthropogenic effects. Seawater samples were collected monthly from five sampling stations (new harbor, old harbor, wastewater treatment plant outlet, protected Natura area, Drepano beach). Viral targets included human adenoviruses (hAdVs), as index human viruses, while noroviruses (NoVs) and hepatitis A virus (HAV) were also studied. Kalamas river samples were collected seasonally, from three sampling stations (Soulopoulo, Dam, Sagiada-estuaries), while viral targets included also porcine adenoviruses (pAdVs) and bovine polyoma viruses (bPyVs), as additional index viruses. All water samples were analyzed for standard bacterial indicators, as well. Physicochemical and meteorological data were also collected. Based on the standard bacterial indices, both sea and river water samples did not exceed the limits set according to Directive 2006/7/EU. However, positive samples for hAdVs were found occasionally in all sampling sites in Igoumenitsa gulf (23.3%, 14/60) showing fecal contamination of human origin. Moreover, HAV was detected once, in the sampling site of the old port (at 510 GC/L). Most of the Kalamas water samples were found positive for hAdVs (58.3%, 7/12), while human noroviruses GI (NoVGI) (8.3%, 1/12) and GII (NoVGII) (16.7%, 2/12) were also detected. HAV, pAdVs, and bovine polyomaviruses (bPyVs) were not detected in any of the analyzed samples. No statistically significant correlations were found between classic bacterial indicators and viral targets, nor between viruses and meteorological data. Overall, the present study contributed to the collection of useful data for the biomonitoring of the region, and the assessment of the overall impact of anthropogenic activities. It provided also valuable information for the evaluation of the risk of waterborne viral infections and the protection of public health. It was the first virological study in the area and one of the few in Greece.
Assuntos
Água Doce/virologia , Água do Mar/virologia , Vírus/crescimento & desenvolvimento , Microbiologia da Água , Qualidade da Água , Adenoviridae/crescimento & desenvolvimento , Adenovírus Humanos/crescimento & desenvolvimento , Adenovirus Suínos/crescimento & desenvolvimento , Animais , Bovinos , Monitoramento Ambiental , Grécia , Vírus da Hepatite A/crescimento & desenvolvimento , Humanos , Norovirus/crescimento & desenvolvimento , Polyomavirus/crescimento & desenvolvimento , SuínosRESUMO
Microbes are considered to have a global distribution due to their high dispersal capabilities. However, our knowledge of the way geographically distant microbial communities assemble after dispersal in a new environment is limited. In this study, we examined whether communities would converge because similar taxa would be selected under the same environmental conditions, or would diverge because of initial community composition, after artificial dispersal. To this aim, a microcosm experiment was performed, in which the temporal changes in the composition and diversity of different prokaryoplankton assemblages from three distant geographic coastal areas (Banyuls-sur-Mer in northwest Mediterranean Sea, Pagasitikos Gulf in northeast Mediterranean and Woods Hole, MA, USA in the northwest Atlantic), were studied. Diversity was investigated using amplicon pyrosequencing of the V1-V3 hypervariable regions of the 16S rRNA. The three assemblages were grown separately in particle free and autoclaved Banyuls-sur-mer seawater at 18 °C in the dark. We found that the variability of prokaryoplankton community diversity (expressed as richness, evenness and dominance) as well as the composition were driven by patterns observed in Bacteria. Regarding community composition, similarities were found between treatments at family level. However, at the OTU level microbial communities from the three different original locations diverge rather than converge during incubation. It is suggested that slight differences in the composition of the initial prokaryoplankton communities, resulted in separate clusters the following days even when growth took place under identical abiotic conditions.
RESUMO
Studies focusing on the temporal and spatial dynamics of bacterioplankton communities within littoral areas undergoing direct influences from the coast are quite limited. In addition, they are more complicated to resolve compared to communities in the open ocean. In order to elucidate the effects of spatial vs. temporal variability on bacterial communities in a highly land-influenced semi-enclosed gulf, surface bacterioplankton communities from five coastal sites in Igoumenitsa Gulf (Ionian Sea, Greece) were analyzed over a nine-month period using 16S rDNA 454-pyrosequencing. Temporal differences were more pronounced than spatial ones, with lower diversity indices observed during the summer months. During winter and early spring, bacterial communities were dominated by SAR11 representatives, while this pattern changed in May when they were abruptly replaced by members of Flavobacteriales, Pseudomonadales, and Alteromonadales. Additionally, correlation analysis showed high negative correlations between the presence of SAR11 OTUs in relation to temperature and sunlight that might have driven, directly or indirectly, the disappearance of these OTUs in the summer months. The dominance of SAR11 during the winter months further supported the global distribution of the clade, not only in the open-sea, but also in coastal systems. This study revealed that specific bacteria exhibited distinct succession patterns in an anthropogenic-impacted coastal system. The major bacterioplankton component was represented by commonly found marine bacteria exhibiting seasonal dynamics, while freshwater and terrestrial-related phylotypes were absent.
Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Água do Mar/microbiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Grécia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA , Análise Espaço-TemporalRESUMO
Ciliated protozoa are potential grazers of primary and bacterial production and act as intermediaries between picoplankton and copepods and other large suspension feeders. Accurate determination of ciliate abundance and feeding mode is crucial in oceanic carbon budget estimations. However, the impact of different fixatives on the abundance and cell volume of ciliates has been investigated in only a few studies using either laboratory cultures or natural populations. Lugol's solution and formalin are the most commonly used fixatives for the preservation of ciliates samples. In the present study, the aim was to compare 0.4% Lugol's solution and 2% borated-formalin fixation and evaluate the need of counting duplicate samples each using a different fixative. For this, a large number of samples (n = 110) from the NE Atlantic was analyzed in the frame of POMME program (Multidisciplinary Mesoscale Ocean Program). We established a statistically significant relationship (p < 0.0001) between Lugol's and formalin fixed samples for both abundance (r2 = 0.50) and biomass (r2 = 0.76) of aloricate ciliates which showed that counts were higher in Lugol's solution by a factor of 2 and a non-taxon specific cell-loss in formalin. However, loricate ciliate abundance in our samples which were represented primarily by Tintinnus spp. did not show any difference between the two treatments. Abundance and biomass of mixotrophic ciliates (chloroplast-bearing cells) were for various reasons underestimated in both treatments. Our results show that unique fixation by formalin may severely underestimate ciliates abundance and biomass although their population may not alter. For this reason, Lugol's solution is best for the estimation of their abundance and biomass. However, for counts of mixotrophs and the evaluation of the ecological role of ciliates in carbon flux, double fixation is essential. Compromises regarding the fixatives have lead to severe underestimations of mixotrophs in studies conducted by now.