Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 41(10): 6705-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24996289

RESUMO

In the recent years, temperature and pH-sensitive hydrogels were developed as suitable carriers for drug delivery. In this study, four different pH-sensitive nanohydrogels were designed for an oral insulin delivery modeling. NIPAAm-MAA-HEM copolymers were synthesized by radical chain reaction with 80:8:12 ratios respectively. Reactions were carried out in four conditions including 1,4-dioxan and water as two distinct solution under nitrogen gas-flow. The copolymers were characterized with FT-IR, SEM and TEM. Copolymers were loaded with regular insulin by modified double emulsion method with ratio of 1:10. Release study carried out in pH 1.2 and pH 6.8 at 37 °C. For pH 6.8 and pH 1.2, 2 mg of the insulin loaded nanohydrogels was float in a beaker containing 100 mL of PBS with pH 6.8 and 100 mL of HCl solution with pH 1.2, respectively. Sample collection was done in different times and HPLC was used for analysis of samples using water/acetonitrile (65/35) as the mobile phase. Nanohydrogels synthesis reaction yield was 95 %, HPLC results showed that loading in 1,4-dioxan without cross-linker nanohydrogels was more than others, also indicated that the insulin release of 1,4-dioxan without cross-linker nanohydrogels at acidic pH is less, but in pH 6.8 is the most. Results showed that by opting suitable polymerization method and selecting the best nanohydrogels, we could obtain a suitable insulin loaded nanohydrogels for oral administration.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Insulina/administração & dosagem , Nanoestruturas , Cromatografia Líquida de Alta Pressão , Liberação Controlada de Fármacos , Hidrogéis/síntese química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Artif Cells Nanomed Biotechnol ; 45(6): 1-5, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27537672

RESUMO

BACKGROUND: There are different methods for insulin administration in diabetic patient. Nano-hydrogel is one of the most talented drug carrier for its sensitivity to environmental stimulus. METHODS AND RESULTS: NIPAAm-MAA-HEM copolymers were synthesized by radical chain reaction. The copolymers were characterized with Scanning electron microscopy (SEM) and Transient electron microscopy (TEM). Copolymers were loaded with regular insulin by modified double emulsion method. Diabetic rats are used for feeding insulin-loaded nanohydrogel. Analysis of the results from the measurement of the amount of blood insulin from the rats blood that received insulin in nanohydrogel loaded form compared with rats that received pure insulin is significantly high, which confirm that insulin has been able to pass from the stomach acid barrier by nanohydrogel and is absorbed from the intestine. Blood sugar levels from tested rats indicate that with increasing amount of insulin, blood sugar levels fall down. CONCLUSION: Our study confirms that insulin has been able to pass from the stomach acid barrier by nanohydrogel and be absorbed from the intestine.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hidrogéis , Insulina , Nanopartículas , Administração Oral , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Diabetes Mellitus Experimental/metabolismo , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Concentração de Íons de Hidrogênio , Insulina/química , Insulina/farmacocinética , Insulina/farmacologia , Masculino , Nanopartículas/química , Nanopartículas/uso terapêutico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA