Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 157(3): 651-63, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766810

RESUMO

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas Nucleares/genética , Fosfotransferases/genética , Splicing de RNA , RNA de Transferência/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Fator de Especificidade de Clivagem e Poliadenilação/genética , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Nucleares/metabolismo , Linhagem , Fosfotransferases/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
2.
Am J Hum Genet ; 106(5): 694-706, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32359472

RESUMO

How mutations in the non-coding U8 snoRNA cause the neurological disorder leukoencephalopathy with calcifications and cysts (LCC) is poorly understood. Here, we report the generation of a mutant U8 animal model for interrogating LCC-associated pathology. Mutant U8 zebrafish exhibit defective central nervous system development, a disturbance of ribosomal RNA (rRNA) biogenesis and tp53 activation, which monitors ribosome biogenesis. Further, we demonstrate that fibroblasts from individuals with LCC are defective in rRNA processing. Human precursor-U8 (pre-U8) containing a 3' extension rescued mutant U8 zebrafish, and this result indicates conserved biological function. Analysis of LCC-associated U8 mutations in zebrafish revealed that one null and one functional allele contribute to LCC. We show that mutations in three nucleotides at the 5' end of pre-U8 alter the processing of the 3' extension, and we identify a previously unknown base-pairing interaction between the 5' end and the 3' extension of human pre-U8. Indeed, LCC-associated mutations in any one of seven nucleotides in the 5' end and 3' extension alter the processing of pre-U8, and these mutations are present on a single allele in almost all individuals with LCC identified to date. Given genetic data indicating that bi-allelic null U8 alleles are likely incompatible with human development, and that LCC is not caused by haploinsufficiency, the identification of hypomorphic misprocessing mutations that mediate viable embryogenesis furthers our understanding of LCC molecular pathology and cerebral vascular homeostasis.


Assuntos
Alelos , Calcinose/genética , Cistos do Sistema Nervoso Central/genética , Cistos/genética , Leucoencefalopatias/genética , Mutação , RNA Nucleolar Pequeno/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Calcinose/patologia , Cistos do Sistema Nervoso Central/patologia , Sequência Conservada , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Humanos , Leucoencefalopatias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Am J Hum Genet ; 98(2): 363-72, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26833329

RESUMO

Genetic studies of intellectual disability and identification of monogenic causes of obesity in humans have made immense contribution toward the understanding of the brain and control of body mass. The leptin > melanocortin > SIM1 pathway is dysregulated in multiple monogenic human obesity syndromes but its downstream targets are still unknown. In ten individuals from six families, with overlapping 6q16.1 deletions, we describe a disorder of variable developmental delay, intellectual disability, and susceptibility to obesity and hyperphagia. The 6q16.1 deletions segregated with the phenotype in multiplex families and were shown to be de novo in four families, and there was dramatic phenotypic overlap among affected individuals who were independently ascertained without bias from clinical features. Analysis of the deletions revealed a ∼350 kb critical region on chromosome 6q16.1 that encompasses a gene for proneuronal transcription factor POU3F2, which is important for hypothalamic development and function. Using morpholino and mutant zebrafish models, we show that POU3F2 lies downstream of SIM1 and controls oxytocin expression in the hypothalamic neuroendocrine preoptic area. We show that this finding is consistent with the expression patterns of POU3F2 and related genes in the human brain. Our work helps to further delineate the neuro-endocrine control of energy balance/body mass and demonstrates that this molecular pathway is conserved across multiple species.


Assuntos
Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Obesidade/genética , Fatores do Domínio POU/genética , Deleção de Sequência , Adolescente , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Índice de Massa Corporal , Linhagem Celular , Criança , Pré-Escolar , Cromossomos Humanos Par 6/genética , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Pessoa de Meia-Idade , Ocitocina/metabolismo , Fatores do Domínio POU/metabolismo , Linhagem , Fenótipo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Adulto Jovem , Peixe-Zebra
4.
J Immunol ; 194(6): 2819-25, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25672750

RESUMO

In humans, loss of function mutations in the SAMHD1 (AGS5) gene cause a severe form of Aicardi-Goutières syndrome (AGS), an inherited inflammatory-mediated encephalopathy characterized by increased type I IFN activity and upregulation of IFN-stimulated genes (ISGs). In particular, SAMHD1-related AGS is associated with a distinctive cerebrovascular pathology that commonly leads to stroke. Although inflammatory responses are observed in immune cells cultured from Samhd1 null mouse models, these mice are physically healthy, specifically lacking a brain phenotype. We have investigated the use of zebrafish as an alternative system for generating a clinically relevant model of SAMHD1-related AGS. Using temporal gene knockdown of zebrafish samhd1, we observe hindbrain ventricular swelling and brain hemorrhage. Furthermore, loss of samhd1 or of another AGS-associated gene, adar, leads to a significant upregulation of innate immune-related genes and an increase in the number of cells expressing the zebrafish type I IFN ifnphi1. To our knowledge, this is the first example of an in vivo model of AGS that recapitulates features of both the innate immune and neurological characteristics of the disease. The phenotypes associated with loss of samhd1 and adar suggest a function of these genes in controlling innate immune processes conserved to zebrafish, thereby also contributing to our understanding of antiviral signaling in this model organism.


Assuntos
Hidrolases Anidrido Ácido/genética , Doenças Autoimunes do Sistema Nervoso/genética , Técnicas de Silenciamento de Genes , Interferon Tipo I/genética , Malformações do Sistema Nervoso/genética , Proteínas de Peixe-Zebra/genética , Hidrolases Anidrido Ácido/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Doenças Autoimunes do Sistema Nervoso/embriologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Western Blotting , Ventrículos Cerebrais/anormalidades , Ventrículos Cerebrais/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunidade Inata/genética , Interferon Tipo I/metabolismo , Interferons/genética , Interferons/metabolismo , Hemorragias Intracranianas/embriologia , Hemorragias Intracranianas/genética , Hemorragias Intracranianas/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Malformações do Sistema Nervoso/embriologia , Malformações do Sistema Nervoso/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rombencéfalo/anormalidades , Rombencéfalo/metabolismo , Proteína 1 com Domínio SAM e Domínio HD , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
5.
J Med Genet ; 51(2): 76-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24262145

RESUMO

BACKGROUND: We recently observed mutations in ADAR1 to cause a phenotype of bilateral striatal necrosis (BSN) in a child with the type I interferonopathy Aicardi-Goutières syndrome (AGS). We therefore decided to screen patients with apparently non-syndromic BSN for ADAR1 mutations, and for an upregulation of interferon-stimulated genes (ISGs). METHODS: We performed Sanger sequencing of ADAR1 in a series of patients with BSN presenting to us during our routine clinical practice. We then undertook detailed clinical and neuroradiological phenotyping in nine mutation-positive children. We also measured the expression of ISGs in peripheral blood from these patients, and in children with BSN who did not have ADAR1 mutations. RESULTS: Nine ADAR1 mutation-positive patients from seven families demonstrated an acute (five cases) or subacute (four cases) onset of refractory, four-limb dystonia starting between 8 months and 5 years of age. Eight patients were developmentally normal at initial presentation. In seven cases, the disease was inherited as an autosomal recessive trait, while two related patients were found to have a heterozygous (dominant) ADAR1 mutation. All seven mutation-positive patients assayed showed an upregulation of ISGs (median: 12.50, IQR: 6.43-36.36) compared to controls (median: 0.93, IQR: 0.57-1.30), a so-called interferon signature, present many years after disease onset. No interferon signature was present in four children with BSN negative for mutations in ADAR1 (median: 0.63, IQR: 0.47-1.10). CONCLUSIONS: ADAR1-related disease should be considered in the differential diagnosis of apparently non-syndromic BSN with severe dystonia of varying evolution. The finding of an interferon signature provides a useful screening test for the presence of ADAR1 mutations in this context, and may suggest novel treatment approaches.


Assuntos
Adenosina Desaminase/genética , Interferon Tipo I/fisiologia , Degeneração Estriatonigral/congênito , Estudos de Casos e Controles , Pré-Escolar , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Técnicas de Diagnóstico Molecular , Mutação de Sentido Incorreto , Proteínas de Ligação a RNA , Degeneração Estriatonigral/enzimologia , Degeneração Estriatonigral/genética
6.
Hum Mol Genet ; 21(2): 358-70, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22012984

RESUMO

Despite the high number of genes identified in hereditary polyneuropathies/Charcot-Marie-Tooth (CMT) disease, the genetic defect in many families is still unknown. Here we report the identification of a new gene for autosomal dominant axonal neuropathy in a large three-generation family. Linkage analysis identified a 5 Mb region on 9q33-34 with a LOD score of 5.12. Sequence capture and next-generation sequencing of the region of interest identified five previously unreported non-synonymous heterozygous single nucleotide changes or indels, four of which were confirmed by Sanger sequencing. Two sequence variants co-segregated with the disease, and one, a 2 bp insertion in the last exon of LRSAM1, was also absent in 676 ethnicity-matched control chromosomes. This frameshift mutation (p.Leu708Argfx28) is located in the C-terminal RING finger motif of the encoded protein. Ubiquitin ligase activity in transfected cells with constructs carrying the patient mutation was affected as measured by a higher level of abundance of TSG101, the only reported target of LRSAM1. Injections of morpholino oligonucleotides in zebrafish embryos directed against the ATG or last splice site of zebrafish Lrsam1 disturbed neurodevelopment, showing a less organized neural structure and, in addition, affected tail formation and movement. LRSAM1 is highly expressed in adult spinal cord motoneurons as well as in fetal spinal cord and muscle tissue. Recently, a homozygous mutation in LRSAM1 was proposed as a strong candidate for the disease in a family with recessive axonal polyneuropathy. Our data strongly support the hypothesis that LRSAM1 mutations can cause both dominant and recessive forms of CMT.


Assuntos
Mutação da Fase de Leitura , Genes Dominantes , Ubiquitina-Proteína Ligases/genética , Cromossomos Humanos Par 9 , Feminino , Humanos , Escore Lod , Masculino , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único
7.
Arthritis Rheum ; 65(8): 2161-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23666743

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is a prototype autoimmune disease that is assumed to occur via a complex interplay of environmental and genetic factors. Rare causes of monogenic SLE have been described, providing unique insights into fundamental mechanisms of immune tolerance. The aim of this study was to identify the cause of an autosomal-recessive form of SLE. METHODS: We studied 3 siblings with juvenile-onset SLE from 1 consanguineous kindred and used next-generation sequencing to identify mutations in the disease-associated gene. We performed extensive biochemical, immunologic, and functional assays to assess the impact of the identified mutations on B cell biology. RESULTS: We identified a homozygous missense mutation in PRKCD, encoding protein kinase δ (PKCδ), in all 3 affected siblings. Mutation of PRKCD resulted in reduced expression and activity of the encoded protein PKCδ (involved in the deletion of autoreactive B cells), leading to resistance to B cell receptor- and calcium-dependent apoptosis and increased B cell proliferation. Thus, as for mice deficient in PKCδ, which exhibit an SLE phenotype and B cell expansion, we observed an increased number of immature B cells in the affected family members and a developmental shift toward naive B cells with an immature phenotype. CONCLUSION: Our findings indicate that PKCδ is crucial in regulating B cell tolerance and preventing self-reactivity in humans, and that PKCδ deficiency represents a novel genetic defect of apoptosis leading to SLE.


Assuntos
Apoptose , Linfócitos B/patologia , Lúpus Eritematoso Sistêmico/enzimologia , Lúpus Eritematoso Sistêmico/genética , Mutação de Sentido Incorreto , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/genética , Adolescente , Adulto , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proliferação de Células , Criança , Feminino , Variação Genética , Homozigoto , Humanos , Hiperplasia , Tolerância Imunológica , Lúpus Eritematoso Sistêmico/patologia , Masculino , Polimorfismo de Nucleotídeo Único , Proteína Quinase C-delta/imunologia , Adulto Jovem
8.
Cardiovasc Res ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713105

RESUMO

AIMS: Rare, deleterious genetic variants in FLT4 are associated with Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease (CHD). Distinct genetic variants in FLT4 are also an established cause of Milroy disease, the most prevalent form of primary hereditary lymphoedema. Phenotypic features of these two conditions are non-overlapping, implying pleiotropic cellular mechanisms during development. METHODS AND RESULTS: Here, we show that FLT4 variants identified in TOF patients, when expressed in primary human endothelial cells, cause aggregation of FLT4 protein in the perinuclear endoplasmic reticulum, activating proteostatic and metabolic signalling, whereas lymphoedema-associated FLT4 variants and wildtype FLT4 do not. FLT4 TOF variants display characteristic gene expression profiles in key developmental signalling pathways, revealing a role for FLT4 in cardiogenesis distinct from its role in lymphatic development. Inhibition of proteostatic signalling abrogates these effects, identifying potential avenues for therapeutic intervention. Depletion of flt4 in zebrafish caused cardiac phenotypes of reduced heart size and altered heart looping. These phenotypes were rescued with coinjection of wildtype human FLT4 mRNA, but incompletely or not at all by mRNA harbouring FLT4 TOF variants. CONCLUSIONS: Taken together, we identify a pathogenic mechanism for FLT4 variants predisposing to TOF that is distinct from the known dominant negative mechanism of Milroy-causative variants. FLT4 variants give rise to conditions of the two circulatory subdivisions of the vascular system via distinct developmental pleiotropic molecular mechanisms. TRANSLATIONAL PERSPECTIVE: Proteostatic dysfunction, if confirmed as a mechanism of CHD pathogenesis for other predisposing genes, may identify pathways to therapeutic interventions. Distinguishing mechanistically how variants in FLT4 give rise to CHD may have potential to individualise genetic counselling in affected families.

9.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527803

RESUMO

Inflammasomes are immune complexes whose activation leads to the release of pro-inflammatory cytokines IL-18 and IL-1ß. Type I IFNs play a role in fighting infection and stimulate the expression of IFN-stimulated genes (ISGs) involved in inflammation. Despite the importance of these cytokines in inflammation, the regulation of inflammasomes by type I IFNs remains poorly understood. Here, we analysed RNA-sequencing data from patients with monogenic interferonopathies and found an up-regulation of several inflammasome-related genes. To investigate the effect of type I IFN on the inflammasome, we treated human monocyte-derived macrophages with IFN-α and observed an increase in CASP1 and GSDMD mRNA levels over time, whereas IL1B and NLRP3 were not directly correlated to IFN-α exposure time. IFN-α treatment reduced the release of mature IL-1ß and IL-18, but not caspase-1, in response to ATP-mediated NLRP3 inflammasome activation, suggesting regulation occurs at cytokine expression levels and not the inflammasome itself. However, more studies are required to investigate how regulation by IFN-α occurs and impacts NLRP3 and other inflammasomes at both transcriptional and post-translational levels.


Assuntos
Interferon Tipo I , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Interferon Tipo I/metabolismo , Interleucina-18/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Caspase 1/metabolismo
10.
iScience ; 27(2): 108968, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327788

RESUMO

Excessive or aberrant NLRP3 inflammasome activation has been implicated in the progression and initiation of many inflammatory conditions; however, currently no NLRP3 inflammasome inhibitors have been approved for therapeutic use in the clinic. Here we have identified that the natural product brazilin effectively inhibits both priming and activation of the NLRP3 inflammasome in cultured murine macrophages, a human iPSC microglial cell line and in a mouse model of acute peritoneal inflammation. Through computational modeling, we predict that brazilin can adopt a favorable binding pose within a site of the NLRP3 protein which is essential for its conformational activation. Our results not only encourage further evaluation of brazilin as a therapeutic agent for NLRP3-related inflammatory diseases, but also introduce this small-molecule as a promising scaffold structure for the development of derivative NLRP3 inhibitor compounds.

11.
Hum Mol Genet ; 20(8): 1574-84, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21273289

RESUMO

Pontocerebellar hypoplasia (PCH) represents a group (PCH1-6) of neurodegenerative autosomal recessive disorders characterized by hypoplasia and/or atrophy of the cerebellum, hypoplasia of the ventral pons, progressive microcephaly and variable neocortical atrophy. The majority of PCH2 and PCH4 cases are caused by mutations in the TSEN54 gene; one of the four subunits comprising the tRNA-splicing endonuclease (TSEN) complex. We hypothesized that TSEN54 mutations act through a loss of function mechanism. At 8 weeks of gestation, human TSEN54 is expressed ubiquitously in the brain, yet strong expression is seen within the telencephalon and metencephalon. Comparable expression patterns for tsen54 are observed in zebrafish embryos. Morpholino (MO) knockdown of tsen54 in zebrafish embryos results in loss of structural definition in the brain. This phenotype was partially rescued by co-injecting the MO with human TSEN54 mRNA. A developmental patterning defect was not associated with tsen54 knockdown; however, an increase in cell death within the brain was observed, thus bearing resemblance to PCH pathophysiology. Additionally, N-methyl-N-nitrosourea mutant zebrafish homozygous for a tsen54 premature stop-codon mutation die within 9 days post-fertilization. To determine whether a common disease pathway exists between TSEN54 and other PCH-related genes, we also monitored the effects of mitochondrial arginyl-tRNA synthetase (rars2; PCH1 and PCH6) knockdown in zebrafish. Comparable brain phenotypes were observed following the inhibition of both genes. These data strongly support the hypothesis that TSEN54 mutations cause PCH through a loss of function mechanism. Also we suggest that a common disease pathway may exist between TSEN54- and RARS2-related PCH, which may involve a tRNA processing-related mechanism.


Assuntos
Endorribonucleases/genética , Inativação Gênica , Atrofias Olivopontocerebelares/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Arginina-tRNA Ligase/genética , Sequência de Bases , Padronização Corporal/genética , Encéfalo/anormalidades , Encéfalo/embriologia , Encéfalo/metabolismo , Morte Celular/genética , Endorribonucleases/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Humanos , Hibridização In Situ , Larva/crescimento & desenvolvimento , Fatores de Transcrição Otx/genética , Fenótipo , Transcrição Gênica , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Front Immunol ; 14: 1100967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949945

RESUMO

Aicardi-Goutières syndrome (AGS1-9) is a genetically determined encephalopathy that falls under the type I interferonopathy disease class, characterized by excessive type I interferon (IFN-I) activity, coupled with upregulation of IFN-stimulated genes (ISGs), which can be explained by the vital role these proteins play in self-non-self-discrimination. To date, few mouse models fully replicate the vast clinical phenotypes observed in AGS patients. Therefore, we investigated the use of zebrafish as an alternative species for generating a clinically relevant model of AGS. Using CRISPR-cas9 technology, we generated a stable mutant zebrafish line recapitulating AGS5, which arises from recessive mutations in SAMHD1. The resulting homozygous mutant zebrafish larvae possess a number of neurological phenotypes, exemplified by variable, but increased expression of several ISGs in the head region, a significant increase in brain cell death, microcephaly and locomotion deficits. A link between IFN-I signaling and cholesterol biosynthesis has been highlighted by others, but not previously implicated in the type I interferonopathies. Through assessment of neurovascular integrity and qPCR analysis we identified a significant dysregulation of cholesterol biosynthesis in the zebrafish model. Furthermore, dysregulation of cholesterol biosynthesis gene expression was also observed through RNA sequencing analysis of AGS patient whole blood. From this novel finding, we hypothesize that cholesterol dysregulation may play a role in AGS disease pathophysiology. Further experimentation will lend critical insight into the molecular pathophysiology of AGS and the potential links involving aberrant type I IFN signaling and cholesterol dysregulation.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Interferon Tipo I , Malformações do Sistema Nervoso , Animais , Camundongos , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
13.
Brain ; 134(Pt 1): 143-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20952379

RESUMO

Pontocerebellar hypoplasia is a group of autosomal recessive neurodegenerative disorders with prenatal onset. The common characteristics are cerebellar hypoplasia with variable atrophy of the cerebellum and the ventral pons. Supratentorial involvement is reflected by variable neocortical atrophy, ventriculomegaly and microcephaly. Mutations in the transfer RNA splicing endonuclease subunit genes (TSEN54, TSEN2, TSEN34) were found to be associated with pontocerebellar hypoplasia types 2 and 4. Mutations in the mitochondrial transfer RNA arginyl synthetase gene (RARS2) were associated with pontocerebellar hypoplasia type 6. We studied a cohort of 169 patients from 141 families for mutations in these genes, of whom 106 patients tested positive for mutations in one of the TSEN genes or the RARS2 gene. In order to delineate the neuroradiological and clinical phenotype of patients with mutations in these genes, we compared this group with 63 patients suspected of pontocerebellar hypoplasia who were negative on mutation analysis. We found a strong correlation (P < 0.0005) between TSEN54 mutations and a dragonfly-like cerebellar pattern on magnetic resonance imaging, in which the cerebellar hemispheres are flat and severely reduced in size and the vermis is relatively spared. Mutations in TSEN54 are clinically associated with dyskinesia and/or dystonia and variable degrees of spasticity, in some cases with pure generalized spasticity. Nonsense or splice site mutations in TSEN54 are associated with a more severe phenotype of more perinatal symptoms, ventilator dependency and early death. In addition, we present ten new mutations in TSEN54, TSEN2 and RARS2. Furthermore, we show that pontocerebellar hypoplasia type 1 together with elevated cerebrospinal fluid lactate may be caused by RARS2 mutations.


Assuntos
Arginina-tRNA Ligase/genética , Encéfalo/patologia , Endorribonucleases/genética , Adolescente , Distribuição de Qui-Quadrado , Criança , Pré-Escolar , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação , Atrofias Olivopontocerebelares/genética , Atrofias Olivopontocerebelares/patologia
14.
Expert Opin Drug Discov ; 17(6): 559-568, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587689

RESUMO

INTRODUCTION: The global health burden of stroke is significant and few therapeutic treatment options currently exist for patients. Pre-clinical research relies heavily on rodent stroke models but the limitations associated with using these systems alone has meant translation of drug compounds to the clinic has not been greatly successful to date. Zebrafish disease modeling offers a potentially complementary platform for pre-clinical compound screening to aid the drug discovery process for translational stroke research. AREAS COVERED: In this review, the authors introduce stroke and describe the issues associated with the current pre-clinical drug development pipeline and the advantages that zebrafish disease modeling can offer. Existing zebrafish models of ischemic and hemorrhagic stroke are reviewed. Examples of how zebrafish models have been utilized for drug discovery in other disease disciplines are also discussed. EXPERT OPINION: Zebrafish disease modeling holds the capacity and potential to significantly enhance the stroke drug development pipeline. However, for this system to be more widely accepted and incorporated into translational stroke research, continued improvement of the existing zebrafish stroke models, as well as focussed collaboration between zebrafish and stroke researchers, is essential.


Assuntos
Acidente Vascular Cerebral , Peixe-Zebra , Animais , Modelos Animais de Doenças , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Acidente Vascular Cerebral/tratamento farmacológico , Pesquisa Translacional Biomédica
15.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098999

RESUMO

Despite the global health burden, treatment of spontaneous intracerebral haemorrhage (ICH) is largely supportive, and translation of specific medical therapies has not been successful. Zebrafish larvae offer a unique platform for drug screening to rapidly identify neuroprotective compounds following ICH. We applied the Spectrum Collection library compounds to zebrafish larvae acutely after ICH to screen for decreased brain cell death and identified 150 successful drugs. Candidates were then evaluated for possible indications with other cardiovascular diseases. Six compounds were identified, including two angiotensin-converting enzyme inhibitors (ACE-Is). Ramipril and quinapril were further assessed to confirm a significant 55% reduction in brain cell death. Proteomic analysis revealed potential mechanisms of neuroprotection. Using the INTERACT2 clinical trial dataset, we demonstrated a significant reduction in the adjusted odds of an unfavourable shift in the modified Rankin scale at 90 days for patients receiving an ACE-I after ICH (versus no ACE-I; odds ratio, 0.80; 95% confidence interval, 0.68-0.95; P=0.009). The zebrafish larval model of spontaneous ICH can be used as a reliable drug screening platform and has identified therapeutics that may offer neuroprotection. This article has an associated First Person interview with the first author of the paper.


Assuntos
Neuroproteção , Peixe-Zebra , Animais , Hemorragia Cerebral/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Larva , Proteômica
16.
Int J Stroke ; 16(2): 123-136, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33183165

RESUMO

Intracerebral hemorrhage is a devastating global health burden with limited treatment options and is responsible for 49% of 6.5 million annual stroke-related deaths comparable to ischemic stroke. Despite the impact of intracerebral hemorrhage, there are currently no effective treatments and so weaknesses in the translational pipeline must be addressed. There have been many preclinical studies in intracerebral hemorrhage models with positive outcomes for potential therapies in vivo, but beyond advancing the understanding of intracerebral hemorrhage pathology, there has been no translation toward successful clinical application. Multidisciplinary preclinical research, use of multiple models, and validation in human tissue are essential for effective translation. Repurposing of therapeutics for intracerebral hemorrhage may be the most promising strategy to help relieve the global health burden of intracerebral hemorrhage. Here, we have reviewed the existing literature to highlight repurposable drugs with successful outcomes in preclinical models of intracerebral hemorrhage that have realistic potential for development into the clinic for intracerebral hemorrhage.


Assuntos
Preparações Farmacêuticas , Acidente Vascular Cerebral , Hemorragia Cerebral/tratamento farmacológico , Humanos , Resultado do Tratamento
17.
Nat Commun ; 12(1): 833, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547280

RESUMO

The structure of proline prevents it from adopting an optimal position for rapid protein synthesis. Poly-proline-tract (PPT) associated ribosomal stalling is resolved by highly conserved eIF5A, the only protein to contain the amino acid hypusine. We show that de novo heterozygous EIF5A variants cause a disorder characterized by variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism. Yeast growth assays, polysome profiling, total/hypusinated eIF5A levels and PPT-reporters studies reveal that the variants impair eIF5A function, reduce eIF5A-ribosome interactions and impair the synthesis of PPT-containing proteins. Supplementation with 1 mM spermidine partially corrects the yeast growth defects, improves the polysome profiles and restores expression of PPT reporters. In zebrafish, knockdown eif5a partly recapitulates the human phenotype that can be rescued with 1 µM spermidine supplementation. In summary, we uncover the role of eIF5A in human development and disease, demonstrate the mechanistic complexity of EIF5A-related disorder and raise possibilities for its treatment.


Assuntos
Deficiências do Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento , Microcefalia/genética , Micrognatismo/genética , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Adolescente , Sequência de Aminoácidos , Animais , Criança , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Embrião não Mamífero , Feminino , Humanos , Lisina/análogos & derivados , Lisina/genética , Lisina/metabolismo , Masculino , Microcefalia/metabolismo , Microcefalia/patologia , Micrognatismo/metabolismo , Micrognatismo/patologia , Fatores de Iniciação de Peptídeos/deficiência , Peptídeos/genética , Peptídeos/metabolismo , Biossíntese de Proteínas , Conformação Proteica , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espermidina/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
18.
Front Immunol ; 11: 623650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519829

RESUMO

Autoimmune and autoinflammatory diseases are rare but often devastating disorders, underpinned by abnormal immune function. While some autoimmune disorders are thought to be triggered by a burden of infection throughout life, others are thought to be genetic in origin. Among these heritable disorders are the type I interferonopathies, including the rare Mendelian childhood-onset encephalitis Aicardi-Goutières syndrome. Patients with Aicardi Goutières syndrome are born with defects in enzymes responsible for nucleic acid metabolism and develop devastating white matter abnormalities resembling congenital cytomegalovirus brain infection. In some cases, common infections preceded the onset of the disease, suggesting immune stimulation as a potential trigger. Thus, the antiviral immune response has been actively studied in an attempt to provide clues on the pathological mechanisms and inform on the development of therapies. Animal models have been fundamental in deciphering biological mechanisms in human health and disease. Multiple rodent and zebrafish models are available to study type I interferonopathies, which have advanced our understanding of the human disease by identifying key pathological pathways and cellular drivers. However, striking differences in phenotype have also emerged between these vertebrate models, with zebrafish models recapitulating key features of the human neuropathology often lacking in rodents. In this review, we compare rodent and zebrafish models, and summarize how they have advanced our understanding of the pathological mechanisms in Aicardi Goutières syndrome and similar disorders. We highlight recent discoveries on the impact of laboratory environments on immune stimulation and how this may inform the differences in pathological severity between mouse and zebrafish models of type I interferonopathies. Understanding how these differences arise will inform the improvement of animal disease modeling to accelerate progress in the development of therapies for these devastating childhood disorders.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Animais , Doenças Autoimunes do Sistema Nervoso/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Malformações do Sistema Nervoso/patologia
19.
Transl Stroke Res ; 11(6): 1229-1242, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32632777

RESUMO

Apart from acute and chronic blood pressure lowering, we have no specific medications to prevent intracerebral haemorrhage (ICH) or improve outcomes once bleeding has occurred. One reason for this may be related to particular limitations associated with the current pre-clinical models of ICH, leading to a failure to translate into the clinic. It would seem that a breakdown in the 'drug development pipeline' currently exists for translational ICH research which needs to be urgently addressed. Here, we review the most commonly used pre-clinical models of ICH and discuss their advantages and disadvantages in the context of translational studies. We propose that to increase our chances of successfully identifying new therapeutics for ICH, a bi-directional, 2- or 3-pronged approach using more than one model species/system could be useful for confirming key pre-clinical observations. Furthermore, we highlight that post-mortem/ex-vivo ICH patient material is a precious and underused resource which could play an essential role in the verification of experimental results prior to consideration for further clinical investigation. Embracing multidisciplinary collaboration between pre-clinical and clinical ICH research groups will be essential to ensure the success of this type of approach in the future.


Assuntos
Hemorragia Cerebral , Modelos Animais de Doenças , Pesquisa Translacional Biomédica , Animais , Humanos
20.
J Neurochem ; 110(1): 34-44, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19453301

RESUMO

Mutations in spastin are the most common cause of hereditary spastic paraplegia (HSP) but the mechanisms by which mutant spastin induces disease are not clear. Spastin functions to regulate microtubule organisation, and because of the essential role of microtubules in axonal transport, this has led to the suggestion that defects in axonal transport may underlie at least part of the disease process in HSP. However, as yet there is no direct evidence to support this notion. Here we analysed axonal transport in a novel mouse model of spastin-induced HSP that involves a pathogenic splice site mutation, which leads to a loss of spastin protein. A mutation located within the same splice site has been previously described in HSP. Spastin mice develop gait abnormalities that correlate with phenotypes seen in HSP patients and also axonal swellings containing cytoskeletal proteins, mitochondria and the amyloid precursor protein (APP). Pathological analyses of human HSP cases caused by spastin mutations revealed the presence of similar axonal swellings. To determine whether mutant spastin influenced axonal transport we quantified transport of two cargoes, mitochondria and APP-containing membrane bound organelles, in neurons from mutant spastin and control mice, using time-lapse microscopy. We found that mutant spastin perturbs anterograde transport of both cargoes. In neurons with axonal swellings we found that the mitochondrial axonal transport defects were exacerbated; distal to axonal swellings both anterograde and retrograde transport were severely reduced. These results strongly support a direct role for defective axonal transport in the pathogenesis of HSP because of spastin mutation.


Assuntos
Adenosina Trifosfatases/genética , Transporte Axonal/genética , Neurônios Motores/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Medula Espinal/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/genética , Predisposição Genética para Doença/genética , Humanos , Coxeadura Animal/genética , Coxeadura Animal/metabolismo , Coxeadura Animal/patologia , Camundongos , Camundongos Mutantes Neurológicos , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Mitocôndrias/metabolismo , Neurônios Motores/patologia , Mutação/genética , Paraplegia Espástica Hereditária/fisiopatologia , Espastina , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Degeneração Walleriana/genética , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA