Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Int J Biometeorol ; 68(6): 1179-1197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676745

RESUMO

Cotton is a major economic crop predominantly cultivated under rainfed situations. The accurate prediction of cotton yield invariably helps farmers, industries, and policy makers. The final cotton yield is mostly determined by the weather patterns that prevail during the crop growing phase. Crop yield prediction with greater accuracy is possible due to the development of innovative technologies which analyses the bigdata with its high-performance computing abilities. Machine learning technologies can make yield prediction reasonable and faster and with greater flexibility than process based complex crop simulation models. The present study demonstrates the usability of ML algorithms for yield forecasting and facilitates the comparison of different models. The cotton yield was simulated by employing the weekly weather indices as inputs and the model performance was assessed by nRMSE, MAPE and EF values. Results show that stacked generalised ensemble model and artificial neural networks predicted the cotton yield with lower nRMSE, MAPE and higher efficiency compared to other models. Variable importance studies in LASSO and ENET model found minimum temperature and relative humidity as the main determinates of cotton yield in all districts. The models were ranked based these performance metrics in the order of Stacked generalised ensemble > ANN > PCA ANN > SMLR ANN > LASSO> ENET > SVM > PCA SMLR > SMLR SVM > SMLR. This study shows that stacked generalised ensembling and ANN method can be used for reliable yield forecasting at district or county level and helps stakeholders in timely decision-making.


Assuntos
Previsões , Gossypium , Aprendizado de Máquina , Redes Neurais de Computação , Tempo (Meteorologia) , Gossypium/crescimento & desenvolvimento , Chuva , Análise de Regressão , Modelos Teóricos
2.
Int J Biometeorol ; 67(1): 165-180, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36323951

RESUMO

Pigeon pea is the second most important grain legume in India, primarily grown under rainfed conditions. Any changes in agro-climatic conditions will have a profound influence on the productivity of pigeon pea (Cajanus cajan) yield and, as a result, the total pulse production of the country. In this context, weather-based crop yield prediction will enable farmers, decision-makers, and administrators in dealing with hardships. The current study examines the application of the stepwise linear regression method, supervised machine learning algorithms (support vector machines (SVM) and random forest (RF)), shrinkage regression approaches (least absolute shrinkage and selection operator (LASSO) or elastic net (ENET)), and artificial neural network (ANN) model for pigeon pea yield prediction using long-term weather data. Among the approaches, ANN resulted in a higher coefficient of determination (R2 = 0.88-0.99), model efficiency (0.88-1.00) with subsequent lower normalised root mean square error (nRMSE) during calibration (1.13-12.55%), and validation (0.33-21.20%) over others. The temperature alone or its interaction with other weather parameters was identified as the most influencing variables in the study area. The Pearson correlation coefficients were also determined for the observed and predicted yield. Those values also showed ANN as the best model with correlation values ranging from 0.939 to 0.999 followed by RF (0.955-0.982) and LASSO (0.880-0.982). However, all the approaches adopted in the study were outperformed the statistical method, i.e. stepwise linear regression with lower error values and higher model efficiency. Thus, these approaches can be effectively used for precise yield prediction of pigeon pea over different districts of Karnataka in India.


Assuntos
Cajanus , Índia , Tempo (Meteorologia) , Aprendizado de Máquina , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA