Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Ann Surg ; 277(4): e817-e824, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129506

RESUMO

OBJECTIVE: We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation. SUMMARY BACKGROUND DATA: Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions. METHODS: Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures. RESULTS: One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53). CONCLUSION: Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation.


Assuntos
Adenoma , Microbioma Gastrointestinal , Humanos , Bactérias/genética , RNA Ribossômico 16S/genética , Adenosina Desaminase , Peptídeos e Proteínas de Sinalização Intercelular , Fezes/microbiologia , Adenoma/diagnóstico , Adenoma/microbiologia
2.
J Fish Dis ; 46(6): 619-627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36821594

RESUMO

The intestinal nematode Pseudocapillaria tomentosa in zebrafish (Danio rerio) causes profound intestinal lesions, emaciation and death and is a promoter of a common intestinal cancer in zebrafish. This nematode has been detected in zebrafish from about 15% of the laboratories. Adult worms are readily detected about 3 weeks after exposure by either histology or wet mount preparations of the intestine, and larval worms are inconsistently observed in fish before this time. A quantitative PCR (qPCR) test was recently developed to detect the worm in fish and water, and here we determined that the test on zebrafish intestines was effective for earlier detection. Four lines of zebrafish (AB, TU, 5D and Casper) were experimentally infected and evaluated by wet mounts and qPCR at 8, 15-, 22-, 31- and 44-day post-exposure (dpe). At the first two time points, only 8% of the wet mounts from exposed fish were identified as infected, while the same intestines screened by qPCR showed 78% positivity, with low and consistent cycle threshold (Ct) values at these times. Wet mounts at later time points showed a high prevalence of infection, but this was still surpassed by qPCR.


Assuntos
Doenças dos Peixes , Nematoides , Animais , Peixe-Zebra , Doenças dos Peixes/diagnóstico , Intestinos , Reação em Cadeia da Polimerase
3.
Mol Cell ; 36(2): 231-44, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19800275

RESUMO

Endogenous small RNAs (endo-siRNAs) interact with Argonaute (AGO) proteins to mediate sequence-specific regulation of diverse biological processes. Here, we combine deep-sequencing and genetic approaches to explore the biogenesis and function of endo-siRNAs in C. elegans. We describe conditional alleles of the Dicer-related helicase, drh-3, that abrogate both RNA interference and the biogenesis of endo-siRNAs, called 22G-RNAs. DRH-3 is a core component of RNA-dependent RNA polymerase (RdRP) complexes essential for several distinct 22G-RNA systems. We show that, in the germline, one system is dependent on worm-specific AGOs, including WAGO-1, which localizes to germline nuage structures called P granules. WAGO-1 silences certain genes, transposons, pseudogenes, and cryptic loci. Finally, we demonstrate that components of the nonsense-mediated decay pathway function in at least one WAGO-mediated surveillance pathway. These findings broaden our understanding of the biogenesis and diversity of 22G-RNAs and suggest additional regulatory functions for small RNAs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Genoma/genética , Células Germinativas/metabolismo , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Análise de Sequência de RNA , Temperatura
4.
Mol Cell ; 31(1): 67-78, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18571452

RESUMO

In metazoans, Piwi-related Argonaute proteins have been linked to germline maintenance, and to a class of germline-enriched small RNAs termed piRNAs. Here we show that an abundant class of 21 nucleotide small RNAs (21U-RNAs) are expressed in the C. elegans germline, interact with the C. elegans Piwi family member PRG-1, and depend on PRG-1 activity for their accumulation. The PRG-1 protein is expressed throughout development and localizes to nuage-like structures called P granules. Although 21U-RNA loci share a conserved upstream sequence motif, the mature 21U-RNAs are not conserved and, with few exceptions, fail to exhibit complementarity or evidence for direct regulation of other expressed sequences. Our findings demonstrate that 21U-RNAs are the piRNAs of C. elegans and link this class of small RNAs and their associated Piwi Argonaute to the maintenance of temperature-dependent fertility.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas , Sequência de Bases , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Fertilidade , Regulação da Expressão Gênica , Células Germinativas/citologia , Células Germinativas/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Complexo de Inativação Induzido por RNA , Sequências Reguladoras de Ácido Nucleico/genética
5.
Mol Cell ; 32(5): 673-84, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19061642

RESUMO

In genetic hybrids, the silencing of nucleolar rRNA genes inherited from one progenitor is the epigenetic phenomenon known as nucleolar dominance. An RNAi knockdown screen identified the Arabidopsis de novo cytosine methyltransferase, DRM2, and the methylcytosine binding domain proteins, MBD6 and MBD10, as activities required for nucleolar dominance. MBD10 localizes throughout the nucleus, but MBD6 preferentially associates with silenced rRNA genes and does so in a DRM2-dependent manner. DRM2 methylation is thought to be guided by siRNAs whose biogenesis requires RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Consistent with this hypothesis, knockdown of DCL3 or RDR2 disrupts nucleolar dominance. Collectively, these results indicate that in addition to directing the silencing of retrotransposons and noncoding repeats, siRNAs specify de novo cytosine methylation patterns that are recognized by MBD6 and MBD10 in the large-scale silencing of rRNA gene loci.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Nucléolo Celular/genética , Citosina/metabolismo , Metilação de DNA , Inativação Gênica , RNA Interferente Pequeno/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Pareamento de Bases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Intergênico , Heterocromatina/metabolismo , Modelos Biológicos , Região Organizadora do Nucléolo/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA , RNA de Plantas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
6.
Sci Rep ; 14(1): 14618, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918492

RESUMO

Early-life exposure to environmental toxicants like Benzo[a]pyrene (BaP) is associated with several health consequences in vertebrates (i.e., impaired or altered neurophysiological and behavioral development). Although toxicant impacts were initially studied relative to host physiology, recent studies suggest that the gut microbiome is a possible target and/or mediator of behavioral responses to chemical exposure in organisms, via the gut-brain axis. However, the connection between BaP exposure, gut microbiota, and developmental neurotoxicity remains understudied. Using a zebrafish model, we determined whether the gut microbiome influences BaP impacts on behavior development. Embryonic zebrafish were treated with increasing concentrations of BaP and allowed to grow to the larval life stage, during which they underwent behavioral testing and intestinal dissection for gut microbiome profiling via high-throughput sequencing. We found that exposure affected larval zebrafish microbiome diversity and composition in a manner tied to behavioral development: increasing concentrations of BaP were associated with increased taxonomic diversity, exposure was associated with unweighted UniFrac distance, and microbiome diversity and exposure predicted larval behavior. Further, a gnotobiotic zebrafish experiment clarified whether microbiome presence was associated with BaP exposure response and behavioral changes. We found that gut microbiome state altered the relationship between BaP exposure concentration and behavioral response. These results support the idea that the zebrafish gut microbiome is a determinant of the developmental neurotoxicity that results from chemical exposure.


Assuntos
Comportamento Animal , Benzo(a)pireno , Microbioma Gastrointestinal , Larva , Peixe-Zebra , Animais , Peixe-Zebra/microbiologia , Benzo(a)pireno/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/microbiologia
7.
J Virol ; 86(11): 6002-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22438553

RESUMO

The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests.


Assuntos
Closteroviridae/genética , Expressão Gênica , Vetores Genéticos , Interferência de RNA , Vitis/virologia , Metabolismo dos Carboidratos , Regulação da Expressão Gênica , Dados de Sequência Molecular , Proteínas de Plantas/biossíntese , Análise de Sequência de DNA , Vitis/genética , Vitis/metabolismo
8.
Plant Cell ; 22(4): 1074-89, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20407027

RESUMO

MicroRNAs (miRNAs) are short regulatory RNAs processed from partially self-complementary foldbacks within longer MIRNA primary transcripts. Several MIRNA families are conserved deeply through land plants, but many are present only in closely related species or are species specific. The finding of numerous evolutionarily young MIRNA, many with low expression and few if any targets, supports a rapid birth-death model for MIRNA evolution. A systematic analysis of MIRNA genes and families in the close relatives, Arabidopsis thaliana and Arabidopsis lyrata, was conducted using both whole-genome comparisons and high-throughput sequencing of small RNAs. Orthologs of 143 A. thaliana MIRNA genes were identified in A. lyrata, with nine having significant sequence or processing changes that likely alter function. In addition, at least 13% of MIRNA genes in each species are unique, despite their relatively recent speciation (approximately 10 million years ago). Alignment of MIRNA foldbacks to the Arabidopsis genomes revealed evidence for recent origins of 32 families by inverted or direct duplication of mostly protein-coding gene sequences, but less than half of these yield miRNA that are predicted to target transcripts from the originating gene family. miRNA nucleotide divergence between A. lyrata and A. thaliana orthologs was higher for young MIRNA genes, consistent with reduced purifying selection compared with deeply conserved MIRNA genes. Additionally, target sites of younger miRNA were lost more frequently than for deeply conserved families. In summary, our systematic analyses emphasize the dynamic nature of the MIRNA complement of plant genomes.


Assuntos
Arabidopsis/genética , Evolução Molecular , MicroRNAs/genética , RNA de Plantas/genética , Hibridização Genômica Comparativa , Sequência Conservada , Genes de Plantas , Genoma de Planta , Alinhamento de Sequência
9.
Genes (Basel) ; 14(9)2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-37761842

RESUMO

Exposure to second-hand Smoke (SHS) remains prevalent. The underlying mechanisms of how SHS affects the brain require elucidation. We tested the hypothesis that SHS inhalation drives changes in the gut microbiome, impacting behavioral and cognitive performance as well as neuropathology in two-month-old wild-type (WT) mice and mice expressing wild-type human tau, a genetic model pertinent to Alzheimer's disease mice, following chronic SHS exposure (10 months to ~30 mg/m3). SHS exposure impacted the composition of the gut microbiome as well as the biodiversity and evenness of the gut microbiome in a sex-dependent fashion. This variation in the composition and biodiversity of the gut microbiome is also associated with several measures of cognitive performance. These results support the hypothesis that the gut microbiome contributes to the effect of SHS exposure on cognition. The percentage of 8-OHdG-labeled cells in the CA1 region of the hippocampus was also associated with performance in the novel object recognition test, consistent with urine and serum levels of 8-OHdG serving as a biomarker of cognitive performance in humans. We also assessed the effects of SHS on the percentage of p21-labeled cells, an early cellular marker of senescence that is upregulated in bronchial cells after exposure to cigarette smoke. Nuclear staining of p21-labeled cells was more prominent in larger cells of the prefrontal cortex and CA1 hippocampal neurons of SHS-exposed mice than in sham-exposed mice, and there was a significantly greater percentage of labelled cells in the prefrontal cortex and CA1 region of the hippocampus of SHS than air-exposed mice, suggesting that exposure to SHS may result in accelerated brain aging through oxidative-stress-induced injury.


Assuntos
Microbioma Gastrointestinal , Produtos do Tabaco , Poluição por Fumaça de Tabaco , Humanos , Animais , Camundongos , Lactente , Poluição por Fumaça de Tabaco/efeitos adversos , Estresse Oxidativo , Cognição , Dano ao DNA
10.
Anim Microbiome ; 5(1): 38, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563644

RESUMO

BACKGROUND: Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (129- and 214-day-old) zebrafish fed each diet throughout their lifespan. RESULTS: Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated how 214-day-old fish microbiome compositions respond to exposure of a common laboratory pathogen, Mycobacterium chelonae, and whether these responses differ as a function of diet. Our analysis finds that diet determines the manner in which the zebrafish gut microbiome responds to M. chelonae exposure, especially for moderate and low abundance taxa. Moreover, histopathological analysis finds that male fish fed different diets are differentially infected by M. chelonae. CONCLUSIONS: Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA