Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1307563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410382

RESUMO

There is an increasing awareness in the field of Salmonella epidemiology that focusing control efforts on those serotypes which cause severe human health outcomes, as opposed to broadly targeting all Salmonella, will likely lead to the greatest advances in decreasing the incidence of salmonellosis. Yet, little guidance exists to support validated, scientific selection of target serotypes. The goal of this perspective is to develop an approach to identifying serotypes of greater concern and present a case study using meat- and poultry-attributed outbreaks to examine challenges in developing a standardized framework for defining target serotypes.

2.
PLoS One ; 19(7): e0307833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39047007

RESUMO

The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes the disease amphibian chytridiomycosis, which has contributed to population declines in many species of amphibians throughout the world. Previous observational studies have shown that nematodes, waterfowl, lizards, other dipterans, and crayfish have properties which may allow them to harbor and spread Bd; therefore, we sought to determine the carrier capabilities of invertebrates to a further extent in a laboratory setting. We use the insect Drosophila melanogaster as a model organism to quantify the potential relationship between insects and Bd. Our findings show that D. melanogaster can test positive for Bd for up to five days post-exposure and can transmit Bd to conspecifics without suffering mortality. Insects of various types interact with the amphibian habitat and amphibians themselves, making this a potentially important route of transmission between amphibians and of dispersal across the environment.


Assuntos
Batrachochytrium , Drosophila melanogaster , Animais , Drosophila melanogaster/microbiologia , Batrachochytrium/patogenicidade , Anfíbios/microbiologia , Micoses/veterinária , Micoses/microbiologia , Quitridiomicetos/patogenicidade , Quitridiomicetos/fisiologia
3.
J Food Prot ; 87(6): 100273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599382

RESUMO

Cattle are considered a primary reservoir of Shiga toxin (stx)-producing Escherichia coli that cause enterohemorrhagic disease (EHEC), and contaminated beef products are one vehicle of transmission to humans. However, animals entering the beef harvest process originate from differing production systems: feedlots, dairies, and beef breeding herds. The objective of this study was to determine if fed cattle, cull dairy, and or cull beef cattle carry differing proportions and serogroups of EHEC at harvest. Feces were collected via rectoanal mucosal swabs (RAMSs) from 1,039 fed cattle, 1,058 cull dairy cattle, and 1,018 cull beef cattle at harvest plants in seven U.S. states (CA, GA, NE, PA, TX, WA, and WI). The proportion of the stx gene in feces of fed cattle (99.04%) was not significantly different (P > 0.05) than in the feces of cull dairy (92.06%) and cull beef (91.85%) cattle. When two additional factors predictive of EHEC (intimin and ecf1 genes) were considered, EHEC was significantly greater (P < 0.05) in fed cattle (77.29%) than in cull dairy (47.54%) and cull beef (38.51%) cattle. The presence of E. coli O157:H7 and five common non-O157 EHEC of serogroups O26, O103, O111, O121, and O145 was determined using molecular analysis for single nucleotide polymorphisms (SNPs) followed by culture isolation. SNP analysis identified 23.48%, 17.67%, and 10.81% and culture isolation confirmed 2.98%, 3.31%, and 3.00% of fed, cull dairy, and cull beef cattle feces to contain one of these EHEC, respectively. The most common serogroups confirmed by culture isolation were O157, O103, and O26. Potential EHEC of fourteen other serogroups were isolated as well, from 4.86%, 2.46%, and 2.01% of fed, cull dairy, and cull beef cattle feces, respectively; with the most common being serogroups O177, O74, O98, and O84. The identification of particular EHEC serogroups in different types of cattle at harvest may offer opportunities to improve food safety risk management.


Assuntos
Fezes , Animais , Bovinos , Fezes/microbiologia , Sorogrupo , Humanos , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Infecções por Escherichia coli/veterinária , Escherichia coli Shiga Toxigênica/isolamento & purificação , Contaminação de Alimentos/análise
4.
Front Microbiol ; 15: 1379203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832117

RESUMO

Background: Pork processing plants in the United States (US) cease operations for 24-48 h every six or twelve months to perform intense sanitization (IS) using fogging, foaming, and further antimicrobial treatments to disrupt natural biofilms that may harbor pathogens and spoilage organisms. The impact such treatments have on short-term changes in environmental microorganisms is not well understood, nor is the rate at which bacterial communities return. Methods: Swab samples were collected from floor drains to provide representative environmental microorganisms at two US pork processing plants before, during, and after an IS procedure. Samples were collected from four coolers where finished carcasses were chilled and from four locations near cutting tables. Each sample was characterized by total mesophile count (TMC), total psychrophile count (TPC), and other indicator bacteria; their biofilm-forming ability, tolerance of the formed biofilm to a quaternary ammonium compound (300 ppm, QAC), and ability to protect co-inoculated Salmonella enterica. In addition, bacterial community composition was determined using shotgun metagenomic sequencing. Results: IS procedures disrupted bacteria present but to different extents depending on the plant and the area of the plant. IS reduced TPC and TMC, by up to 1.5 Log10 CFU only to return to pre-IS levels within 2-3 days. The impact of IS on microorganisms in coolers was varied, with reductions of 2-4 Log10, and required 2 to 4 weeks to return to pre-IS levels. The results near fabrication lines were mixed, with little to no significant changes at one plant, while at the other, two processing lines showed 4 to 6 Log10 reductions. Resistance to QAC and the protection of Salmonella by the biofilms varied between plants and between areas of the plants as well. Community profiling of bacteria at the genus level showed that IS reduced species diversity and the disruption led to new community compositions that in some cases did not return to the pre-IS state even after 15 to 16 weeks. Discussion: The results found here reveal the impact of using IS to disrupt the presence of pathogen or spoilage microorganisms in US pork processing facilities may not have the intended effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA