Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Acta Neuropathol ; 139(2): 243-257, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768671

RESUMO

Tumors of the pineal region comprise several different entities with distinct clinical and histopathological features. Whereas some entities predominantly affect adults, pineoblastoma (PB) constitutes a highly aggressive malignancy of childhood with a poor outcome. PBs mainly arise sporadically, but may also occur in the context of cancer predisposition syndromes including DICER1 and RB1 germline mutation. With this study, we investigate clinico-pathological subgroups of pineal tumors and further characterize their biological features. We performed genome-wide DNA methylation analysis in 195 tumors of the pineal region and 20 normal pineal gland controls. Copy-number profiles were obtained from DNA methylation data; gene panel sequencing was added for 93 tumors and analysis was further complemented by miRNA sequencing for 22 tumor samples. Unsupervised clustering based on DNA methylation profiling separated known subgroups, like pineocytoma, pineal parenchymal tumor of intermediate differentiation, papillary tumor of the pineal region and PB, and further distinct subtypes within these groups, including three subtypes within the core PB subgroup. The novel molecular subgroup Pin-RB includes cases of trilateral retinoblastoma as well as sporadic pineal tumors with RB1 alterations, and displays similarities with retinoblastoma. Distinct clinical associations discriminate the second novel molecular subgroup PB-MYC from other PB cases. Alterations within the miRNA processing pathway (affecting DROSHA, DGCR8 or DICER1) are found in about two thirds of cases in the three core PB subtypes. Methylation profiling revealed biologically distinct groups of pineal tumors with specific clinical and molecular features. Our findings provide a foundation for further clinical as well as molecular and functional characterization of PB and other pineal tumors, including the role of miRNA processing defects in oncogenesis.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glândula Pineal , Pinealoma/genética , Pinealoma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/metabolismo , Estudos de Casos e Controles , Criança , Metilação de DNA , Feminino , Humanos , Masculino , MicroRNAs , Pessoa de Meia-Idade , Mutação/genética , Pinealoma/metabolismo , Adulto Jovem
2.
Int J Mol Sci ; 20(3)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736351

RESUMO

In the last decade, circulating nucleic acids such as microRNAs (miRNAs) and cell-free DNA (cfDNA) have become increasingly important in serving as potential novel biomarkers for a variety of human diseases. If cell-free nucleic acids are to become routinely used in diagnostics, the difference in plasma miRNA and cfDNA levels between healthy and diseased subjects must exceed pre-analytical and analytical variability. Until now, few studies have addressed the time limitations of pre-processing or explored the potential use of long-term blood storage tubes, which might need to be implemented in real-life diagnostics. In this study, we analyzed the stability of four breast cancer-associated miRNAs and two cancer-associated genes under various storage conditions, to test their limitations for potential application in clinical diagnostics. In two consecutive experiments, we tested the limits of conventional EDTA tubes, as well as long-term storage blood collection tubes (BCTs) from four different manufacturers. We found that circulating miRNAs are relatively stable when stored in EDTA monovettes for up to 12 h before processing. When stored in BCTs, circulating miRNAs and cfDNA are stable for up to 7 days, depending on the manufacturer. Norgen tubes were superior for cfDNA yield, while Streck tubes performed the worst in our study with hemolysis induction. In conclusion, plasma prepared from whole blood is suitable for the quantification of both cf-miRNAs and cfDNA simultaneously.


Assuntos
Coleta de Amostras Sanguíneas , Ácidos Nucleicos Livres , Biópsia Líquida , Biomarcadores , Preservação de Sangue , Coleta de Amostras Sanguíneas/instrumentação , Coleta de Amostras Sanguíneas/métodos , MicroRNA Circulante , Feminino , Humanos , Biópsia Líquida/métodos , Masculino , Reação em Cadeia da Polimerase , Estabilidade de RNA , Fatores de Tempo
3.
Cell Death Dis ; 12(10): 885, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584066

RESUMO

Glioblastoma is the most common malignant primary brain tumor. To date, clinically relevant biomarkers are restricted to isocitrate dehydrogenase (IDH) gene 1 or 2 mutations and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Long non-coding RNAs (lncRNAs) have been shown to contribute to glioblastoma pathogenesis and could potentially serve as novel biomarkers. The clinical significance of HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) was determined by analyzing HOTAIRM1 in multiple glioblastoma gene expression data sets for associations with prognosis, as well as, IDH mutation and MGMT promoter methylation status. Finally, the role of HOTAIRM1 in glioblastoma biology and radiotherapy resistance was characterized in vitro and in vivo. We identified HOTAIRM1 as a candidate lncRNA whose up-regulation is significantly associated with shorter survival of glioblastoma patients, independent from IDH mutation and MGMT promoter methylation. Glioblastoma cell line models uniformly showed reduced cell viability, decreased invasive growth and diminished colony formation capacity upon HOTAIRM1 down-regulation. Integrated proteogenomic analyses revealed impaired mitochondrial function and determination of reactive oxygen species (ROS) levels confirmed increased ROS levels upon HOTAIRM1 knock-down. HOTAIRM1 knock-down decreased expression of transglutaminase 2 (TGM2), a candidate protein implicated in mitochondrial function, and knock-down of TGM2 mimicked the phenotype of HOTAIRM1 down-regulation in glioblastoma cells. Moreover, HOTAIRM1 modulates radiosensitivity of glioblastoma cells both in vitro and in vivo. Our data support a role for HOTAIRM1 as a driver of biological aggressiveness, radioresistance and poor outcome in glioblastoma. Targeting HOTAIRM1 may be a promising new therapeutic approach.


Assuntos
Glioblastoma/genética , Glioblastoma/radioterapia , MicroRNAs/metabolismo , Tolerância a Radiação/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Clonais , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Camundongos Nus , MicroRNAs/genética , Mitocôndrias/metabolismo , Invasividade Neoplásica , Fenótipo , Prognóstico , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Proteogenômica , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA