RESUMO
Benign breast disease (BBD) is diagnosed in 1-2 million women/year in the US, and while these patients are known to be at substantially increased risk for subsequent development of breast cancer, existing models for risk assessment perform poorly at the individual level. Here, we describe a DNA-microarray-based transcriptional model for breast cancer risk prediction for patients with sclerosing adenosis (SA), which represent » of all BBD patients. A training set was developed from 86 patients diagnosed with SA, of which 27 subsequently developed cancer within 10 years (cases) and 59 remained cancer-free at 10 years (controls). An diagonal linear discriminate analysis-prediction model for prediction of cancer within 10 years (SA TTC10) was generated from transcriptional profiles of FFPE biopsy-derived RNA. This model was tested on a separate validation case-control set composed of 65 SA patients. The SA TTC10 gene signature model, composed of 35 gene features, achieved a clear and significant separation between case and control with receiver operating characteristic area under the curve of 0.913 in the training set and 0.836 in the validation set. Our results provide the first demonstration that benign breast tissue contains transcriptional alterations that indicate risk of breast cancer development, demonstrating that essential precursor biomarkers of malignancy are present many years prior to cancer development. Furthermore, the SA TTC10 gene signature model, which can be assessed on FFPE biopsies, constitutes a novel prognostic biomarker for patients with SA.
Assuntos
Neoplasias da Mama/genética , Doença da Mama Fibrocística/genética , Testes Genéticos/métodos , Modelos Genéticos , Adulto , Biópsia , Neoplasias da Mama/etiologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Doença da Mama Fibrocística/complicações , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Curva ROC , Reprodutibilidade dos Testes , Medição de Risco/métodosRESUMO
Measles virus (MV) vaccine strains have shown significant preclinical antitumor activity against glioblastoma (GBM), the most lethal glioma histology. In this first in human trial (NCT00390299), a carcinoembryonic antigen-expressing oncolytic measles virus derivative (MV-CEA), was administered in recurrent GBM patients either at the resection cavity (Group A), or, intratumorally on day 1, followed by a second dose administered in the resection cavity after tumor resection on day 5 (Group B). A total of 22 patients received study treatment, 9 in Group A and 13 in Group B. Primary endpoint was safety and toxicity: treatment was well tolerated with no dose-limiting toxicity being observed up to the maximum feasible dose (2×107 TCID50). Median OS, a secondary endpoint, was 11.6 mo and one year survival was 45.5% comparing favorably with contemporary controls. Other secondary endpoints included assessment of viremia, MV replication and shedding, humoral and cellular immune response to the injected virus. A 22 interferon stimulated gene (ISG) diagonal linear discriminate analysis (DLDA) classification algorithm in a post-hoc analysis was found to be inversely (R = -0.6, p = 0.04) correlated with viral replication and tumor microenvironment remodeling including proinflammatory changes and CD8 + T cell infiltration in post treatment samples. This data supports that oncolytic MV derivatives warrant further clinical investigation and that an ISG-based DLDA algorithm can provide the basis for treatment personalization.