RESUMO
The functionality of common organic semiconductor materials is determined by their chemical structure and crystal modification. While the former can be fine-tuned via synthesis, a priori control over the crystal structure has remained elusive. We show that the surface tension is the main driver for the plate-like crystallization of a novel small organic molecule n-type semiconductor at the liquid-air interface. This interface provides an ideal environment for the growth of millimeter-sized semiconductor platelets that are only few nanometers thick and thus highly attractive for application in transistors. On the basis of the novel high-performance perylene diimide, we show in as-grown, only 3 nm thin crystals electron mobilities of above 4 cm2/(V s) and excellent bias stress stability. We suggest that the established systematics on solvent parameters can provide the basis of a general framework for a more deterministic crystallization of other small molecules.
RESUMO
Silica gardens are tubular structures that form along the interface of multivalent metal salts and alkaline solutions of sodium silicate, driven by a complex interplay of osmotic and buoyant forces together with chemical reaction. They display peculiar plant-like morphologies and thus can be considered as one of the few examples for the spontaneous biomimetic self-ordering of purely inorganic materials. Recently, we could show that silica gardens moreover are highly dynamic systems that remain far from equilibrium for considerable periods of time long after macroscopic growth is completed. Due to initial compartmentalisation, drastic concentration gradients were found to exist across the tube walls, which give rise to noticeable electrochemical potential differences and decay only slowly in a series of coupled diffusion and precipitation processes. In the present work, we extend these studies and investigate the effect of the nature of the used metal cations on the dynamic behaviour of the system. To that end, we have grown single macroscopic silica garden tubes by controlled addition of sodium silicate sol to pellets of iron(ii) and iron(iii) chloride. In the following, the concentrations of ionic species were measured as a function of time on both sides of the formed membranes, while electrochemical potentials and pH were monitored online by immersing the corresponding sensors into the two separated solution reservoirs. At the end of the experiments, the solid tube material was furthermore characterised with respect to composition and microstructure by a combination of ex situ techniques. The collected data are compared to the previously reported case of cobalt-based silica gardens and used to shed light on ion diffusion through the inorganic membranes as well as progressive mineralisation at both surfaces of the tube walls. Our results reveal important differences in the dynamics of the three studied systems, which can be explained based on the acidity of the metal cations and the porosity of the membranes, leading to substantially dissimilar time-dependent solution chemistry as well as distinct final mineral structures. The insight gained in this work may help to better understand the diffusion properties and precipitation patterns in tubular iron (hydr)oxide/silicate structures observed in geological environments and during steel corrosion.
RESUMO
Bottom-up self-assembly of simple molecular compounds is a prime pathway to complex materials with interesting structures and functions. Coupled reaction systems are known to spontaneously produce highly ordered patterns, so far observed in soft matter. Here we show that similar phenomena can occur during silica-carbonate crystallization, the emerging order being preserved. The resulting materials, called silica biomorphs, exhibit non-crystallographic curved morphologies and hierarchical textures, much reminiscent of structural principles found in natural biominerals. We have used a fluorescent chemosensor to probe local conditions during the growth of such self-organized nanostructures. We demonstrate that the pH oscillates in the local microenvironment near the growth front due to chemical coupling, which becomes manifest in the final mineralized architectures as intrinsic banding patterns with the same periodicity. A better understanding of dynamic autocatalytic crystallization processes in such simple model systems is key to the rational development of advanced materials and to unravel the mechanisms of biomineralization.
Assuntos
Carbonatos/química , Cristalização/métodos , Nanoestruturas/química , Dióxido de Silício/química , Materiais Biomiméticos/química , Precipitação Química , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência , Minerais , Técnicas de Sonda Molecular , Nanoestruturas/ultraestruturaRESUMO
High dose rate brachytherapy affords a frequent reassurance of the precise dwell positions of the radiation source. The current investigation proposes a multi-dimensional scaling transformation of both data sets to estimate dwell positions without any external reference. Furthermore, the related distributions of dwell positions are characterized by uni-or bi-modal heavy-tailed distributions. The latter are well represented by α-stable distributions. The newly proposed data analysis provides dwell position deviations with high accuracy, and, furthermore, offers a convenient visualization of the actual shapes of the catheters which guide the radiation source during the treatment.
Assuntos
Braquiterapia/instrumentação , Catéteres , Fenômenos Eletromagnéticos , Neoplasias/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Braquiterapia/métodos , Humanos , Neoplasias/diagnóstico por imagem , Dosagem RadioterapêuticaRESUMO
Biomorphs are a unique class of self-organised silica-carbonate mineral structures with elaborate shapes. Here we report first approaches to modify these complex inorganic architectures through silane chemistry, binding of nanoparticles, and organic polymerisation. This leads to functional nanostructures in which the complexity of the originally inorganic template is preserved, and offers new diagnostic tools to study the mechanisms underlying their formation.