Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 8: 480, 2007 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18093293

RESUMO

BACKGROUND: Experimental studies of gene expression have identified some of the individual molecular components and elementary reactions that comprise and control cellular behavior. Given our current understanding of gene expression, and the goals of biotechnology research, both scientists and engineers would benefit from detailed simulators that can explicitly compute genome-wide expression levels as a function of individual molecular events, including the activities and interactions of molecules on DNA at single base pair resolution. However, for practical reasons including computational tractability, available simulators have not been able to represent genome-scale models of gene expression at this level of detail. RESULTS: Here we develop a simulator, TABASCO http://openwetware.org/wiki/TABASCO, which enables the precise representation of individual molecules and events in gene expression for genome-scale systems. We use a single molecule computational engine to track individual molecules interacting with and along nucleic acid polymers at single base resolution. Tabasco uses logical rules to automatically update and delimit the set of species and reactions that comprise a system during simulation, thereby avoiding the need for a priori specification of all possible combinations of molecules and reaction events. We confirm that single molecule, base-pair resolved simulation using TABASCO (Tabasco) can accurately compute gene expression dynamics and, moving beyond previous simulators, provide for the direct representation of intermolecular events such as polymerase collisions and promoter occlusion. We demonstrate the computational capacity of Tabasco by simulating the entirety of gene expression during bacteriophage T7 infection; for reference, the 39,937 base pair T7 genome encodes 56 genes that are transcribed by two types of RNA polymerases active across 22 promoters. CONCLUSION: Tabasco enables genome-scale simulation of transcription and translation at individual molecule and single base-pair resolution. By directly representing the position and activity of individual molecules on DNA, Tabasco can directly test the effects of detailed molecular processes on system-wide gene expression. Tabasco would also be useful for studying the complex regulatory mechanisms controlling eukaryotic gene expression. The computational engine underlying Tabasco could also be adapted to represent other types of processive systems in which individual reaction events are organized across a single spatial dimension (e.g., polysaccharide synthesis).


Assuntos
Pareamento de Bases , Perfilação da Expressão Gênica/métodos , Design de Software , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Sítios de Ligação , Simulação por Computador , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Genoma Fúngico , Bases de Conhecimento , Modelos Logísticos , Elementos Reguladores de Transcrição , Sensibilidade e Especificidade , Análise de Sequência de DNA , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas Virais/metabolismo
2.
J Comput Biol ; 11(4): 544-61, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15579231

RESUMO

Biological signaling networks process extracellular cues to control important cell decisions such as death-survival, growth-quiescence, and proliferation-differentiation. After receptor activation, intracellular signaling proteins change in abundance, modification state, and enzymatic activity. Many of the proteins in signaling networks have been identified, but it is not known how signaling molecules work together to control cell decisions. To begin to address this issue, we report the use of partial least squares regression as an analytical method to glean signal-response relationships from heterogeneous multivariate signaling data collected from HT-29 human colon carcinoma cells stimulated to undergo programmed cell death. By partial least squares modeling, we relate dynamic and quantitative measurements of 20-30 intracellular signals to cell survival after treatment with tumor necrosis factor alpha (a death factor) and insulin (a survival factor). We find that partial least squares models can distinguish highly informative signals from redundant uninformative signals to generate a reduced model that retains key signaling features and signal-response relationships. In these models, measurements of biochemical characteristics, based on very different techniques (Western blots, kinase assays, etc.), are grouped together as covariates, showing that heterogenous data have been effectively fused. Importantly, informative protein predictors of cell responses are always multivariate, demonstrating the multicomponent nature of the decision process.


Assuntos
Apoptose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Caspase 8 , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Células HT29 , Humanos , Insulina/farmacologia , Análise dos Mínimos Quadrados , Análise Multivariada , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Biol Eng ; 3: 4, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19298678

RESUMO

BACKGROUND: The engineering of many-component, synthetic biological systems is being made easier by the development of collections of reusable, standard biological parts. However, the complexity of biology makes it difficult to predict the extent to which such efforts will succeed. As a first practical example, the Registry of Standard Biological Parts started at MIT now maintains and distributes thousands of BioBrick standard biological parts. However, BioBrick parts are only standardized in terms of how individual parts are physically assembled into multi-component systems, and most parts remain uncharacterized. Standardized tools, techniques, and units of measurement are needed to facilitate the characterization and reuse of parts by independent researchers across many laboratories. RESULTS: We found that the absolute activity of BioBrick promoters varies across experimental conditions and measurement instruments. We choose one promoter (BBa_J23101) to serve as an in vivo reference standard for promoter activity. We demonstrated that, by measuring the activity of promoters relative to BBa_J23101, we could reduce variation in reported promoter activity due to differences in test conditions and measurement instruments by approximately 50%. We defined a Relative Promoter Unit (RPU) in order to report promoter characterization data in compatible units and developed a measurement kit so that researchers might more easily adopt RPU as a standard unit for reporting promoter activity. We distributed a set of test promoters to multiple labs and found good agreement in the reported relative activities of promoters so measured. We also characterized the relative activities of a reference collection of BioBrick promoters in order to further support adoption of RPU-based measurement standards. CONCLUSION: Relative activity measurements based on an in vivoreference standard enables improved measurement of promoter activity given variation in measurement conditions and instruments. These improvements are sufficient to begin to support the measurement of promoter activities across many laboratories. Additional in vivo reference standards for other types of biological functions would seem likely to have similar utility, and could thus improve research on the design, production, and reuse of standard biological parts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA