Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(28): 19270, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37424452

RESUMO

Correction for 'The Li + CaF → Ca + LiF chemical reaction under cold conditions' by Humberto da Silva Jr et al., Phys. Chem. Chem. Phys., 2023, 25, 14193-14205, https://doi.org/10.1039/D3CP01464A.

2.
Phys Chem Chem Phys ; 25(20): 14193-14205, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37165736

RESUMO

The calcium monofluoride (CaF) molecule has emerged as a promising candidate for precision measurements, quantum simulation, and ultracold chemistry experiments. Inelastic and reactive collisions of laser cooled CaF molecules in optical tweezers have recently been reported and collisions of cold Li atoms with CaF are of current experimental interest. In this paper, we report ab initio electronic structure and full-dimensional quantum dynamical calculations of the Li + CaF → LiF + Ca chemical reaction. The electronic structure calculations are performed using the internally contracted multi-reference configuration-interaction method with Davidson correction (MRCI + Q). An analytic fit of the interaction energies is obtained using a many-body expansion method. A coupled-channel quantum reactive scattering approach implemented in hyperspherical coordinates is adopted for the scattering calculations under cold conditions. Results show that the Li + CaF reaction populates several low-lying vibrational levels and many rotational levels of the product LiF molecule and that the reaction is inefficient in the 1-100 mK regime allowing sympathetic cooling of CaF by collisions with cold Li atoms.

3.
Phys Chem Chem Phys ; 23(9): 5096-5112, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33576359

RESUMO

Electronically non-adiabatic effects play an important role in many chemical reactions. However, how these effects manifest in cold and ultracold chemistry remains largely unexplored. Here for the first time we present from first principles the non-adiabatic quantum dynamics of the reactive scattering between ultracold alkali-metal LiNa molecules and Li atoms. We show that non-adiabatic dynamics induces quantum interference effects that dramatically alter the ultracold rotationally resolved reaction rate coefficients. The interference effect arises from the conical intersection between the ground and an excited electronic state that is energetically accessible even for ultracold collisions. These unique interference effects might be exploited for quantum control applications such as a quantum molecular switch. The non-adiabatic dynamics are based on full-dimensional ab initio potential energy surfaces for the two electronic states that includes the non-adiabatic couplings and an accurate treatment of the long-range interactions. A statistical analysis of rotational populations of the Li2 product reveals a Poisson distribution implying the underlying classical dynamics are chaotic. The Poisson distribution is robust and amenable to experimental verification and appears to be a universal property of ultracold reactions involving alkali metal dimers.

4.
J Chem Phys ; 154(12): 124303, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810695

RESUMO

A first-principles based quantum dynamics study of the Li + LiNa(v = 0, j = 0) → Li2(v', j') + Na reaction is reported for collision energies spanning the ultracold (1 nK) to cold (1 K) regimes. A full-dimensional ab initio potential energy surface for the ground electronic state of Li2Na is utilized that includes an accurate treatment of the long-range interactions. The Li + LiNa reaction is barrierless and exoergic and exhibits a deep attractive potential well that supports complex formation. Thus, significant reactivity occurs even for collision temperatures approaching absolute zero. The reactive scattering calculations are based on a numerically exact time-independent quantum dynamics methodology in hyperspherical coordinates. Total and rotationally resolved rate coefficients are reported at 56 collision energies and include all contributing partial waves. Several shape resonances are observed in many of the rotationally resolved rate coefficients and a small resonance feature is also reported in the total rate coefficient near 50 mK. Of particular interest, the angular distributions or differential cross sections are reported as a function of both the collision energy and scattering angle. Unique quantum fingerprints (bumps, channels, and ripples) are observed in the angular distributions for each product rotational state due to quantum interference and shape resonance contributions. The Li + LiNa reaction is under active experimental investigation so that these intriguing features could be verified experimentally when sufficient product state resolution becomes feasible for collision energies below 1 K.

5.
Phys Chem Chem Phys ; 22(45): 26136-26144, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33047749

RESUMO

Quantum computing is a new and rapidly evolving paradigm for solving chemistry problems. In previous work, we developed the Quantum Annealer Eigensolver (QAE) and applied it to the calculation of the vibrational spectrum of a molecule on the D-Wave quantum annealer. However, the original QAE methodology was applicable to real symmetric matrices only. For many physics and chemistry problems, the diagonalization of complex matrices is required. For example, the calculation of quantum scattering resonances can be formulated as a complex eigenvalue problem where the real part of the eigenvalue is the resonance energy and the imaginary part is proportional to the resonance width. In the present work, we generalize the QAE to treat complex matrices: first complex Hermitian matrices and then complex symmetric matrices. These generalizations are then used to compute a quantum scattering resonance state in a 1D model potential for O + O collisions. These calculations are performed using both a software (classical) annealer and hardware annealer (the D-Wave 2000Q). The results of the complex QAE are also benchmarked against a standard linear algebra library (LAPACK). This work presents the first numerical solution of a complex eigenvalue problem of any kind on a quantum annealer, and it is the first treatment of a quantum scattering resonance on any quantum device.

6.
J Phys Chem A ; 124(14): 2808-2819, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32227893

RESUMO

Several alternative methods for the description of the interaction between rotation and vibration are compared and contrasted using hyperspherical coordinates for a triatomic molecule. These methods differ by the choice of the z-axis and by the assumption of a prolate or oblate rotor shape of the molecule. For each case, a block-structure of the rotational-vibrational Hamiltonian matrix is derived and analyzed, and the advantages and disadvantages of each method are made explicit. This theory is then employed to compute ro-vibrational spectra of singly substituted ozone; roughly, 600 vibrational states of 16O18O16O and 16O16O18O isomers combined, with rotational excitations up to J = 5 and both inversion parities (21600 coupled ro-vibrational states in total). Splittings between the states of different parities, so-called K-doublings, are calculated and analyzed. The roles of the asymmetric-top rotor term and the Coriolis coupling term are determined individually, and it is found that they both affect these splittings, but in the opposite directions. Thus, the two effects partially cancel out, and the residual splittings are relatively small. Energies of the ro-vibrational states reported in this work for 16O18O16O and 16O16O18O are in excellent agreement with literature (available for low-vibrational excitation). New data obtained here for the highly excited vibrational states enable the first systematic study of the Coriolis effect in symmetric and asymmetric isotopomers of ozone.

7.
J Chem Phys ; 152(11): 114302, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32199434

RESUMO

Until now, the potential energy surfaces (PESs) of the ArNO complex found in the literature were two-dimensional, with the NO interatomic distance being fixed. In this work, we present the first accurate three-dimensional ground state X̃ 2Π PESs (both A' and A″) of ArNO computed at the CCSD(T)/CBS level of theory. The equilibrium geometries and the well depths (De) are compared to several other electronic structure methods. We found that using the multireference method, MRCI-F12 makes the surfaces much shallower (by 25%) and the depth of the surfaces does not agree with experimental data. The explicitly correlated coupled-cluster method underestimates the well depth as well. Analytic representations for both A' and A″ surfaces were fit to 4380 ab initio points to within 2.71 cm-1. A three-dimensional Numerov propagator method in Delves coordinates is used to compute the bound state spectrum up to Jtot = 6.5. The recommended dissociation energies are D0 = 97.2 cm-1 for the adiabatic ground state and De = 133.7 (128.1) cm-1 for A' (A″).

8.
J Chem Phys ; 152(14): 144104, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295370

RESUMO

A theoretical framework and a computer code (SpectrumSDT) are developed for accurate calculations of coupled rotational-vibrational states in triatomic molecules using hyper-spherical coordinates and taking into account the Coriolis coupling effect. Concise final formulas are derived for the construction of the Hamiltonian matrix using an efficient combination of the variational basis representation and discrete variable representation methods with locally optimized basis sets and grids. First, the new code is tested by comparing its results with those of the APH3D program of Kendrick et al. [Kendrick, Pack, Walker, and Hayes, J. Chem. Phys. 110, 6673 (1999)]. Then, accurate calculations of the rovibrational spectra are carried out for doubly substituted symmetric (18O16O18O) and asymmetric (18O18O16O) ozone isotopomers for the total angular momentum up to J = 5. Together with similar data recently reported for the singly substituted symmetric (16O18O16O) and asymmetric (16O16O18O) ozone isotopomers, these calculations quantify the role of the Coriolis coupling effect in the large mass-independent isotopic enrichment of ozone, observed in both laboratory experiments and the atmosphere of the Earth. It is found that the Coriolis effect in ozone is relatively small, as evidenced by deviations of its rotational constants from the symmetric-top-rotor behavior, magnitudes of parity splittings (Λ-doubling), and ratios of rovibrational partition functions for asymmetric vs symmetric ozone molecules. It is concluded that all of these characteristics are influenced by the isotopic masses as much as they are influenced by the overall symmetry of the molecule. It is therefore unlikely that the Coriolis coupling effect could be responsible for symmetry-driven mass-independent fractionation of oxygen isotopes in ozone.

9.
J Phys Chem A ; 123(46): 9919-9933, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31647679

RESUMO

The results from electronically non-adiabatic and adiabatic quantum reactive scattering calculations are presented for the H + HD(v = 5-9) → H + HD(v', j') reaction at ultracold collision energies from 10 nK to 60 K. Several experimentally verifiable signatures of the geometric phase are reported in the total and vibrationally and rotationally resolved rate coefficients. Most notable is the predicted 2 orders of magnitude enhancement of the rotationally resolved ultracold rates of odd symmetry relative to those of even symmetry. Prominent shape resonances appear at higher collision energies (100 mK to 20 K), which could be measured experimentally. Significant geometric phase effects are also reported on the resonance energies and lifetimes. In particular, an enhancement (suppression) of the l = 1 (l = 2) shape resonances for HD(v = 5, 6) is predicted for even symmetry relative to those of odd symmetry.

10.
J Chem Phys ; 148(4): 044116, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390799

RESUMO

A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of T Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchange symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 µK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. The results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.

11.
J Phys Chem A ; 119(50): 12291-303, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26317912

RESUMO

It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. The effect arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. It is magnified when the two scattering amplitudes have comparable magnitude and they scatter into the same angular region which occurs in the isotropic scattering characteristic of the ultracold regime (s-wave scattering). Results are presented for the O + OH → H + O2 reaction for total angular momentum quantum number J = 0-5. Large geometric phase effects occur for collision energies below 0.1 K, but the effect vanishes at higher energies when contributions from different partial waves are included. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. In this case, the geometric phase plays the role of a "quantum switch" which can turn the reaction "on" or "off".

13.
J Chem Phys ; 138(16): 164310, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23635141

RESUMO

A quantum dynamics study of the O((1)D) + H2(v = 0 - 2, j = 0) system has been carried out using the potential energy surfaces of Dobbyn and Knowles [Mol. Phys. 91, 1107 (1997)]. A time-independent quantum mechanical method based on hyperspherical coordinates is adopted for the dynamics calculations. Energy dependent cross section, probability, and rate coefficients are computed for the elastic, inelastic, and reactive channels over collision energies ranging from the ultracold to thermal regimes and for total angular momentum quantum number J = 0. The effect of initial vibrational excitation of the H2 molecule on vibrational and rotational populations of the OH product is investigated as a function of the collision energy. Comparison of results for vibrational levels v = 0 - 2 of H2 demonstrates that the vibrational excitation of H2 and its non-reactive relaxation pathway play a minor role in the overall collisional outcome of O((1)D) and H2. It is also found that while the state-resolved product vibrational distributions are sensitive to the initial collision energy and H2 vibrational level, the product rotational distribution depicts an inverted population that is largely insensitive to initial conditions. Rate coefficients evaluated using a J-shifting approximation show reasonable agreement with available theoretical and experimental results suggesting that the J-shifting approximation may be used to evaluate the rate coefficients for O((1)D) + H2 reaction.


Assuntos
Deutério/química , Hidrogênio/química , Hidróxidos/química , Oxigênio/química , Teoria Quântica , Rotação , Vibração
14.
J Chem Phys ; 139(19): 194305, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24320324

RESUMO

Quantum scattering calculations are reported for state-to-state vibrational relaxation and reactive scattering in O + OH(v = 2 - 3, j = 0) collisions on the electronically adiabatic ground state (2)A'' potential energy surface of the HO2 molecule. The time-independent Schrödinger equation in hyperspherical coordinates is solved to determine energy dependent probabilities and cross sections over collision energies ranging from ultracold to 0.35 eV and for total angular momentum quantum number J = 0. A J-shifting approximation is then used to compute initial state selected reactive rate coefficients in the temperature range T = 1 - 400 K. Results are found to be in reasonable agreement with available quasiclassical trajectory calculations. Results indicate that rate coefficients for O2 formation increase with increasing the OH vibrational level except at low and ultralow temperatures where OH(v = 0) exhibits a slightly different trend. It is found that vibrational relaxation of OH in v = 2 and v = 3 vibrational levels is dominated by a multi-quantum process.

15.
J Phys Chem Lett ; 14(14): 3413-3421, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37001115

RESUMO

Ultracold chemical reactions of weakly bound triplet-state alkali metal dimer molecules have recently attracted much experimental interest. We perform rigorous quantum scattering calculations with a new ab initio potential energy surface to explore the chemical reaction of spin-polarized NaLi(a3Σ+) and Li(2S) to form Li2(a3Σu+) and Na(2S). The reaction is exothermic and proceeds readily at ultralow temperatures. Significantly, we observe strong sensitivity of the total reaction rate to small variations of the three-body part of the Li2Na interaction at short range, which we attribute to a relatively small number of open Li2(a3Σu+) product channels populated in the reaction. This provides the first signature of highly non-universal dynamics seen in rigorous quantum reactive scattering calculations of an ultracold exothermic insertion reaction involving a polar alkali dimer molecule, opening up the possibility of probing microscopic interactions in atom+molecule collision complexes via ultracold reactive scattering experiments.

16.
PLoS One ; 17(2): e0263849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35148343

RESUMO

The most advanced D-Wave Advantage quantum annealer has 5000+ qubits, however, every qubit is connected to a small number of neighbors. As such, implementation of a fully-connected graph results in an order of magnitude reduction in qubit count. To compensate for the reduced number of qubits, one has to rely on special heuristic software such as qbsolv, the purpose of which is to decompose a large quadratic unconstrained binary optimization (QUBO) problem into smaller pieces that fit onto a quantum annealer. In this work, we compare the performance of the open-source qbsolv which is a part of the D-Wave Ocean tools and a new Mukai QUBO solver from Quantum Computing Inc. (QCI). The comparison is done for solving the electronic structure problem and is implemented in a classical mode (Tabu search techniques). The Quantum Annealer Eigensolver is used to map the electronic structure eigenvalue-eigenvector equation to a QUBO problem, solvable on a D-Wave annealer. We find that the Mukai QUBO solver outperforms the Ocean qbsolv with one to two orders of magnitude more accurate energies for all calculations done in the present work, both the ground and excited state calculations. This work stimulates the further development of software to assist in the utilization of modern quantum annealers.


Assuntos
Eletrônica/instrumentação , Metodologias Computacionais , Teoria Quântica , Software
17.
Sci Rep ; 12(1): 16824, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207401

RESUMO

In this work we demonstrate a practical prospect of using quantum annealers for simulation of molecular dynamics. A methodology developed for this goal, dubbed Quantum Differential Equations (QDE), is applied to propagate classical trajectories for the vibration of the hydrogen molecule in several regimes: nearly harmonic, highly anharmonic, and dissociative motion. The results obtained using the D-Wave 2000Q quantum annealer are all consistent and quickly converge to the analytical reference solution. Several alternative strategies for such calculations are explored and it was found that the most accurate results and the best efficiency are obtained by combining the quantum annealer with classical post-processing (greedy algorithm). Importantly, the QDE framework developed here is entirely general and can be applied to solve any system of first-order ordinary nonlinear differential equations using a quantum annealer.

18.
Phys Chem Chem Phys ; 13(42): 19067-76, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21674116

RESUMO

We report a quantum dynamics study of O + OH (v = 1, j = 0) collisions on its ground electronic state, employing two different potential energy surfaces: the DIMKP surface by Kendrick and Pack, and the XXZLG surface by Xu et al. A time-independent quantum mechanical method based on hyperspherical coordinates has been adopted for the dynamics calculations. Energy-dependent probabilities and rate coefficients are computed for the elastic, inelastic, and reactive channels over the collision energy range E(coll) = 10(-10)-0.35 eV, for J = 0 total angular momentum. Initial state-selected reaction rate coefficients are also calculated from the J = 0 reaction probabilities by applying a J-shifting approximation, for temperatures in the range T = 10(-6)-700 K. Our results show that the dynamics of the collisional process and its outcome are strongly influenced by long-range forces, and chemical reactivity is found to be sensitive to the choice of the potential energy surface. For O + OH (v = 1, j = 0) collisions at low temperatures, vibrational relaxation of OH competes with reactive scattering. Since long-range interactions can facilitate vibrational relaxation processes, we find that the DIMKP potential (which explicitly includes van der Waals dispersion terms) favours vibrational relaxation over chemical reaction at low temperatures. On the DIMKP potential in the ultracold regime, the reaction rate coefficient for O + OH (v = 1, j = 0) is found to be a factor of thirteen lower than that for O + OH (v = 0, j = 0). This significantly high reactivity of OH (v = 0, j = 0), compared to that of OH (v = 1, j = 0), is attributed to enhancement caused by the presence of a HO(2) quasibound state (scattering resonance) with energy near the O + OH (v = 0, j = 0) dissociation threshold. In contrast, the XXZLG potential does not contain explicit van der Waals terms, being just an extrapolation by a nearly constant function at large O-OH distances. Therefore, long-range potential couplings are absent in calculations using the XXZLG surface, which does not induce vibrational relaxation as efficiently as the DIMKP potential. The XXZLG potential leads to a slightly higher reactivity (a factor of 1.4 higher) for O + OH (v = 1, j = 0) compared to that for O + OH (v = 0, j = 0) at ultracold temperatures. Overall, both potential surfaces yield comparable values of reaction rate coefficients at low temperatures for the O + OH (v = 1, j = 0) reaction.

19.
J Chem Phys ; 134(6): 064108, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21322662

RESUMO

We present a method for properly treating collinear conical intersections in triatomic systems. The general vector potential (gauge theory) approach for including the geometric phase effects associated with collinear conical intersections in hyperspherical coordinates is presented. The current study develops an introductory method in the treatment of collinear conical intersections by using the phase angle method. The geometric phase angle, η, in terms of purely internal coordinates is derived using the example of a spin-aligned quartet lithium triatomic system. A numerical fit and thus an analytical form for the associated vector potentials are explicitly derived for this triatomic A(3) system. The application of this methodology to AB(2) and ABC systems is also discussed.

20.
J Phys Chem Lett ; 12(8): 2160-2165, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626281

RESUMO

Ultracold chemical reactions involve collision temperatures approaching absolute zero, and for molecular systems that exhibit a barrierless and exoergic reaction path significant reactivity can occur. In addition, many molecules contain a conical intersection, and the associated geometric phase has been shown to significantly alter the outcome of ultracold reactions. Here we report a quantum dynamics study for the ultracold O + OH → H + O2 reaction. An analysis of the scattering wave functions reveals explicitly the nature of the quantum interference between the direct and looping reaction pathways around the conical intersection and thus illustrates how the reaction proceeds under the control of the geometric phase for the first time. The wave function analysis should generalize to other ultracold reactions that contain a conical intersection. Our findings indicate that quantum control techniques such as an optical lattice trap or the initial state orientation may be effective in controlling the reactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA