Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(25): 13886-13895, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522880

RESUMO

Elucidating the lineage relationships among different cell types is key to understanding human brain development. Here we developed parallel RNA and DNA analysis after deep sequencing (PRDD-seq), which combines RNA analysis of neuronal cell types with analysis of nested spontaneous DNA somatic mutations as cell lineage markers, identified from joint analysis of single-cell and bulk DNA sequencing by single-cell MosaicHunter (scMH). PRDD-seq enables simultaneous reconstruction of neuronal cell type, cell lineage, and sequential neuronal formation ("birthdate") in postmortem human cerebral cortex. Analysis of two human brains showed remarkable quantitative details that relate mutation mosaic frequency to clonal patterns, confirming an early divergence of precursors for excitatory and inhibitory neurons, and an "inside-out" layer formation of excitatory neurons as seen in other species. In addition our analysis allows an estimate of excitatory neuron-restricted precursors (about 10) that generate the excitatory neurons within a cortical column. Inhibitory neurons showed complex, subtype-specific patterns of neurogenesis, including some patterns of development conserved relative to mouse, but also some aspects of primate cortical interneuron development not seen in mouse. PRDD-seq can be broadly applied to characterize cell identity and lineage from diverse archival samples with single-cell resolution and in potentially any developmental or disease condition.


Assuntos
Linhagem da Célula , Córtex Cerebral/citologia , Neurogênese , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Acúmulo de Mutações , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Análise de Sequência de DNA , Análise de Célula Única
2.
JAMA Neurol ; 80(9): 980-988, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486637

RESUMO

Importance: Polymicrogyria is the most commonly diagnosed cortical malformation and is associated with neurodevelopmental sequelae including epilepsy, motor abnormalities, and cognitive deficits. Polymicrogyria frequently co-occurs with other brain malformations or as part of syndromic diseases. Past studies of polymicrogyria have defined heterogeneous genetic and nongenetic causes but have explained only a small fraction of cases. Objective: To survey germline genetic causes of polymicrogyria in a large cohort and to consider novel polymicrogyria gene associations. Design, Setting, and Participants: This genetic association study analyzed panel sequencing and exome sequencing of accrued DNA samples from a retrospective cohort of families with members with polymicrogyria. Samples were accrued over more than 20 years (1994 to 2020), and sequencing occurred in 2 stages: panel sequencing (June 2015 to January 2016) and whole-exome sequencing (September 2019 to March 2020). Individuals seen at multiple clinical sites for neurological complaints found to have polymicrogyria on neuroimaging, then referred to the research team by evaluating clinicians, were included in the study. Targeted next-generation sequencing and/or exome sequencing were performed on probands (and available parents and siblings) from 284 families with individuals who had isolated polymicrogyria or polymicrogyria as part of a clinical syndrome and no genetic diagnosis at time of referral from clinic, with sequencing from 275 families passing quality control. Main Outcomes and Measures: The number of families in whom genetic sequencing yielded a molecular diagnosis that explained the polymicrogyria in the family. Secondarily, the relative frequency of different genetic causes of polymicrogyria and whether specific genetic causes were associated with co-occurring head size changes were also analyzed. Results: In 32.7% (90 of 275) of polymicrogyria-affected families, genetic variants were identified that provided satisfactory molecular explanations. Known genes most frequently implicated by polymicrogyria-associated variants in this cohort were PIK3R2, TUBB2B, COL4A1, and SCN3A. Six candidate novel polymicrogyria genes were identified or confirmed: de novo missense variants in PANX1, QRICH1, and SCN2A and compound heterozygous variants in TMEM161B, KIF26A, and MAN2C1, each with consistent genotype-phenotype relationships in multiple families. Conclusions and Relevance: This study's findings reveal a higher than previously recognized rate of identifiable genetic causes, specifically of channelopathies, in individuals with polymicrogyria and support the utility of exome sequencing for families affected with polymicrogyria.


Assuntos
Polimicrogiria , Humanos , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , Sequenciamento do Exoma , Estudos Retrospectivos , Mutação de Sentido Incorreto , Irmãos , Proteínas do Tecido Nervoso/genética , Conexinas/genética
3.
Cancer Discov ; 12(1): 172-185, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389641

RESUMO

Although oncogenic mutations have been found in nondiseased, proliferative nonneural tissues, their prevalence in the human brain is unknown. Targeted sequencing of genes implicated in brain tumors in 418 samples derived from 110 individuals of varying ages, without tumor diagnoses, detected oncogenic somatic single-nucleotide variants (sSNV) in 5.4% of the brains, including IDH1 R132H. These mutations were largely present in subcortical white matter and enriched in glial cells and, surprisingly, were less common in older individuals. A depletion of high-allele frequency sSNVs representing macroscopic clones with age was replicated by analysis of bulk RNA sequencing data from 1,816 nondiseased brain samples ranging from fetal to old age. We also describe large clonal copy number variants and that sSNVs show mutational signatures resembling those found in gliomas, suggesting that mutational processes of the normal brain drive early glial oncogenesis. This study helps understand the origin and early evolution of brain tumors. SIGNIFICANCE: In the nondiseased brain, clonal oncogenic mutations are enriched in white matter and are less common in older individuals. We revealed early steps in acquiring oncogenic variants, which are essential to understanding brain tumor origins and building new mutational baselines for diagnostics.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/patologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Oncogenes , Polimorfismo de Nucleotídeo Único , Adulto Jovem
4.
Neuron ; 109(20): 3239-3251.e7, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34478631

RESUMO

Human accelerated regions (HARs) are the fastest-evolving regions of the human genome, and many are hypothesized to function as regulatory elements that drive human-specific gene regulatory programs. We interrogate the in vitro enhancer activity and in vivo epigenetic landscape of more than 3,100 HARs during human neurodevelopment, demonstrating that many HARs appear to act as neurodevelopmental enhancers and that sequence divergence at HARs has largely augmented their neuronal enhancer activity. Furthermore, we demonstrate PPP1R17 to be a putative HAR-regulated gene that has undergone remarkable rewiring of its cell type and developmental expression patterns between non-primates and primates and between non-human primates and humans. Finally, we show that PPP1R17 slows neural progenitor cell cycle progression, paralleling the cell cycle length increase seen predominantly in primate and especially human neurodevelopment. Our findings establish HARs as key components in rewiring human-specific neurodevelopmental gene regulatory programs and provide an integrated resource to study enhancer activity of specific HARs.


Assuntos
Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Animais , Evolução Biológica , Epigenômica , Evolução Molecular , Furões , Humanos , Macaca , Camundongos , Pan troglodytes
5.
Neuron ; 99(5): 905-913.e7, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30146301

RESUMO

Channelopathies are disorders caused by abnormal ion channel function in differentiated excitable tissues. We discovered a unique neurodevelopmental channelopathy resulting from pathogenic variants in SCN3A, a gene encoding the voltage-gated sodium channel NaV1.3. Pathogenic NaV1.3 channels showed altered biophysical properties including increased persistent current. Remarkably, affected individuals showed disrupted folding (polymicrogyria) of the perisylvian cortex of the brain but did not typically exhibit epilepsy; they presented with prominent speech and oral motor dysfunction, implicating SCN3A in prenatal development of human cortical language areas. The development of this disorder parallels SCN3A expression, which we observed to be highest early in fetal cortical development in progenitor cells of the outer subventricular zone and cortical plate neurons and decreased postnatally, when SCN1A (NaV1.1) expression increased. Disrupted cerebral cortical folding and neuronal migration were recapitulated in ferrets expressing the mutant channel, underscoring the unexpected role of SCN3A in progenitor cells and migrating neurons.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Desenvolvimento da Linguagem , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canais de Sódio/genética , Adolescente , Adulto , Animais , Movimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Furões , Células HEK293 , Humanos , Lactente , Masculino , Megalencefalia/diagnóstico por imagem , Megalencefalia/genética , Megalencefalia/patologia , Pessoa de Meia-Idade , Linhagem , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , Polimicrogiria/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA