Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Chemphyschem ; 25(4): e202300812, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227375

RESUMO

Two series of hydrogels based on acrylamide and its copolymers with acrylonitrile and acrylic acid were synthesized by two cross-linking methods - chemical (using N,N'-methylene bis-acrylamide) and physical (using montmorillonite (MMT)) ones. The structure of the gels was characterized by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The swelling and sorption properties were analyzed as a function of both the monomer composition and the cross-linking method. The shift of the band corresponding to Si-O (995-1030 cm-1 ) confirmed the formation of intercalation structures for MMT-cross-linked gels. Moreover, physically cross-linked gels demonstrated a non-monotonic dependence of the swelling degree on the MMT concentration, and acrylamide-acrylic acid copolymer MMT-cross-linked gels showed pH sensitivity and the highest swelling degree of 150 g/g. The highest sorption capacity towards cadmium(II) ions was demonstrated by acrylamide-acrylic acid copolymer gels, both covalently cross-linked (30 mg/g) and MMT-cross-linked (8.9 mg/g).

2.
Soft Matter ; 16(24): 5689-5701, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32519723

RESUMO

Recently, considering the potential applications of hydrogel nanocomposites in biomedical engineering, there has been a growing interest in the synthesis of hydrogels with improved mechanical properties. Among magnetic materials, iron oxides are of particular interest due to their magnetic properties and biocompatibility. At the same time, LAPONITE®, a synthetic clay, can be used to improve the mechanical properties of polymer-based nanocomposites. In this study we report the effects of hydrogel composition and structure on its thermoresponsive properties and hydrogel sorption and release of a model anticancer drug - 5-fluorouracil. Using one-step coprecipitation method we synthesized magnetic LAPONITE® (LAM) nanoparticles with magnetite-to-LAPONITE® weight ratios from 2 : 1 to 1 : 8. With increase in magnetite concentration the ferrofluidic properties of LAM nanoparticles are getting improved, while fluorouracil absorptivity - decreases. Exfoliation of the clay is observed when the magnetite content exceeds the LAPONITE® content. Physical crosslinking of poly(N-isopropylacrylamide) with LAM nanoparticles yields magnetic thermosensitive hydrogel nanocomposites with controllable temperature-induced drug release. All hydrogel nanocomposites have a distinct volume phase transition from a swollen state to a collapsed state upon heating within the physiologically acceptable temperature range of 33-36 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA