RESUMO
Evolutionary origins of novel forms are often obscure because early and transitional fossils tend to be rare, poorly preserved, or lack proper phylogenetic contexts. We describe a new, exceptionally preserved enigmatic crab from the mid-Cretaceous of Colombia and the United States, whose completeness illuminates the early disparity of the group and the origins of novel forms. Its large and unprotected compound eyes, small fusiform body, and leg-like mouthparts suggest larval trait retention into adulthood via heterochronic development (pedomorphosis), while its large oar-like legs represent the earliest known adaptations in crabs for active swimming. Our phylogenetic analyses, including representatives of all major lineages of fossil and extant crabs, challenge conventional views of their evolution by revealing multiple convergent losses of a typical "crab-like" body plan since the Early Cretaceous. These parallel morphological transformations may be associated with repeated invasions of novel environments, including the pelagic/necto-benthic zone in this pedomorphic chimera crab.
Assuntos
Artrópodes/anatomia & histologia , Artrópodes/classificação , Evolução Biológica , Fósseis , Adaptação Fisiológica , Animais , Linhagem da Célula , Colômbia , Larva , Filogenia , Natação , Estados UnidosRESUMO
The isolated double-track layer of the cell wall of the gram-negative marine pseudomonad studied here contains a cleavage plane. This finding localizes the single cleavage plane of the cell wall and shows that the molecular architecture of this layer provides the lipid-enriched layer which cleaves preferentially in the frozen cell. The observation that the isolated double-track layer of the cell wall is sufficiently ordered at the molecular level to yield a well-defined X-ray diffraction pattern with a d-spacing of 0.44 nm shows that its molecular architecture is very similar to that of true membranes. This specific d-spacing is produced by the highly ordered packing of the hydrophobic portions of phospholipid molecules. Therefore, the double-track layer of the cell wall has been shown, by these two biophysical means, to have a molecular architecture which would allow it to function as the membrane-like "molecular sieve" layer, whose presence has been deduced from physiological data. This layer is important in the retention of cell wall-associated enzymes and in the control of the movement of large molecules through the cell wall.
Assuntos
Parede Celular , Pseudomonas/citologia , Bactérias/citologia , Parede Celular/fisiologia , Técnica de Congelamento e Réplica , Biologia Marinha , Microscopia Eletrônica , Água do Mar , Coloração e Rotulagem , Microbiologia da Água , Difração de Raios XRESUMO
This paper presents the fi rst comprehensive and quantitative study of substances that interfere with the forensic luminol test for blood. Two hundred and fifty substances have been selected on the basis of modern lifestyles and of contiguity with crime scenes. The intensity of the chemiluminescence produced by each substance has been measured relative to that of haemoglobin and the peak wavelength shift has also been determined. The following is a short list of nine substances that produce chemiluminescence intensities comparable with that of haemoglobin: turnips, parsnips, horseradishes, commercial bleach (NaClO), copper metal, some furniture polishes, some enamel paints, and some interior fabrics in motor vehicles. Care needs to be taken when the luminol test for blood is used in the presence of these substances.