Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 184(5): 1188-1200.e19, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577765

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Macaca fascicularis , Glicoproteína da Espícula de Coronavírus/química , Animais , Anticorpos Neutralizantes , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Nanopartículas/administração & dosagem , Coelhos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/sangue , Linfócitos T/imunologia , Carga Viral
2.
J Infect Dis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843052

RESUMO

BACKGROUND: The immunological determinants of delayed viral clearance and intra-host viral evolution that drive the development of new pathogenic virus strains in immunocompromised individuals are unknown. Therefore, we longitudinally studied SARS-CoV-2-specific immune responses in relation to viral-clearance and evolution in immunocompromised individuals. METHODS: Among Omicron-infected immunocompromised individuals, we determined SARS-CoV-2-specific T- and B-cell responses, anti-spike IgG(3) titers, neutralization titers, and monoclonal antibody (mAb)-resistance-associated mutations. The 28-day post-enrollment nasopharyngeal specimen defined early (RT-PCR negative ≤28 days) or late (RT-PCR- positive >28 days) viral-clearance. RESULTS: Of 30 patients included (median age 61.9 years [IQR 47.4-72.3], 50% females), 20 (66.7%) received mAb-therapy. Thirteen (43.3%) demonstrated early and 17 (56.7%) late viral-clearance. Early viral-clearance patients and patients without resistance-associated mutations had significantly higher baseline IFN-γ release and early viral-clearance patients had a higher frequency of SARS-CoV-2-specific B-cells at baseline. In non-mAb-treated patients, day 7 IgG and neutralization titers were significantly higher in those with early versus late viral-clearance. CONCLUSION: An early robust adaptive immune response is vital for efficient viral-clearance and associated with less emergence of mAb-resistance-associated mutations in Omicron-infected immunocompromised patients. This emphasizes the importance of early SARS-CoV-2-specific T- and B-cell responses and thereby provides a rationale for development of novel therapeutic approaches.

3.
PLoS Pathog ; 18(3): e1010340, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35255100

RESUMO

SARS-CoV-2 attaches to angiotensin-converting enzyme 2 (ACE2) to gain entry into cells after which the spike protein is cleaved by the transmembrane serine protease 2 (TMPRSS2) to facilitate viral-host membrane fusion. ACE2 and TMPRSS2 expression profiles have been analyzed at the genomic, transcriptomic, and single-cell RNAseq levels. However, transcriptomic data and actual protein validation convey conflicting information regarding the distribution of the biologically relevant protein receptor in whole tissues. To describe the organ-level architecture of receptor expression, related to the ability of ACE2 and TMPRSS2 to mediate infectivity, we performed a volumetric analysis of whole Syrian hamster lung lobes. Lung tissue of infected and control animals was stained using antibodies against ACE2 and TMPRSS2, combined with SARS-CoV-2 nucleoprotein staining. This was followed by light-sheet microscopy imaging to visualize their expression and related infection patterns. The data demonstrate that infection is restricted to sites containing both ACE2 and TMPRSS2, the latter is expressed in the primary and secondary bronchi whereas ACE2 is predominantly observed in the bronchioles and alveoli. Conversely, infection completely overlaps where ACE2 and TMPRSS2 co-localize in the tertiary bronchi, bronchioles, and alveoli.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Animais , Cricetinae , Pulmão/metabolismo , Mesocricetus , SARS-CoV-2
4.
iScience ; 26(10): 108009, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37841584

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has remained a medical threat due to the evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants. A stabilized spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants, with COVA309-35 being the most potent against the autologous virus, as well as Omicron BA.1 and BA.2, and COVA309-22 having binding and neutralization activity against Omicron BA.4/5, BQ.1.1, and XBB.1. When combining the COVA309 mAbs as cocktails or bispecific antibodies, the breadth and potency were improved. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.

5.
bioRxiv ; 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36263063

RESUMO

The worldwide pandemic caused by SARS-CoV-2 has remained a human medical threat due to the continued evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants for therapeutic and prophylactic use. A stabilized autologous SARS-CoV-2 spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants of concern, with COVA309-35 being the most potent against the autologous virus, as well as against Omicron BA.1 and BA.2. When combining the COVA309 mAbs as cocktails or bispecific antibody formats, the breadth and potency was significantly improved against all tested variants. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.

6.
Nat Commun ; 13(1): 4539, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927266

RESUMO

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Epitopos , Humanos , Isotipos de Imunoglobulinas , Receptores de Antígenos de Linfócitos B , Glicoproteína da Espícula de Coronavírus
7.
Science ; 369(6504): 643-650, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540902

RESUMO

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a large impact on global health, travel, and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated monoclonal antibodies from three convalescent coronavirus disease 2019 (COVID-19) patients using a SARS-CoV-2 stabilized prefusion spike protein. These antibodies had low levels of somatic hypermutation and showed a strong enrichment in VH1-69, VH3-30-3, and VH1-24 gene usage. A subset of the antibodies was able to potently inhibit authentic SARS-CoV-2 infection at a concentration as low as 0.007 micrograms per milliliter. Competition and electron microscopy studies illustrate that the SARS-CoV-2 spike protein contains multiple distinct antigenic sites, including several receptor-binding domain (RBD) epitopes as well as non-RBD epitopes. In addition to providing guidance for vaccine design, the antibodies described here are promising candidates for COVID-19 treatment and prevention.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Afinidade de Anticorpos , Antígenos Virais/imunologia , Subpopulações de Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19 , Linhagem Celular Tumoral , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Epitopos/imunologia , Feminino , Humanos , Memória Imunológica , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas/imunologia , Receptores de Coronavírus , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA