Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Plant Biol ; 24(1): 123, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373900

RESUMO

Understanding the molecular processes and hormonal signals that govern root growth is of paramount importance for effective forest management. While Arabidopsis studies have shed light on the role of the primary root in root system development, the structure of root systems in trees is considerably more intricate, posing challenges to comprehend taproot growth in acorn-sown and nursery-cultivated seedlings. In this study, we investigated Quercus robur seedlings using rhizotrons, containers, and transplanted containers to rhizotrons, aiming to unravel the impact of forest nursery practices on processes governing taproot growth and root system development. Root samples were subjected to RNA-seq analysis to identify gene expression patterns and perform differential gene expression and phytohormone analysis. Among studied cultivation systems, differentially expressed genes (DEGs) exhibited significant diversity, where the number of co-occurring DEGs among cultivation systems was significantly smaller than the number of unique DEGs in different cultivation systems. Moreover, the results imply that container cultivation triggers the activation of several genes associated with linolenic acid and peptide synthesis in root growth. Upon transplantation from containers to rhizotrons, rapid enhancement in gene expression occurs, followed by gradual reduction as root growth progresses, ultimately reaching a similar expression pattern as observed in the taproot of rhizotron-cultivated seedlings. Phytohormone analysis revealed that taproot growth patterns under different cultivation systems are regulated by the interplay between auxin and cytokinin concentrations. Moreover, the diversification of hormone levels within the root zone and cultivation systems allows for taproot growth inhibition and prompt recovery in transplanted seedlings. Our study highlights the crucial role of hormone interactions during the early stages of taproot elongation, influencing root system formation across.


Assuntos
Arabidopsis , Quercus , Quercus/metabolismo , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Hormônios/metabolismo , Hormônios/farmacologia , Regulação da Expressão Gênica de Plantas
2.
Physiol Plant ; 176(4): e14385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38956782

RESUMO

The main purpose of this study was to demonstrate that the course of anther development, including post-meiotic maturation, dehiscence and senescence, is ensured by the interdependencies between jasmonic acid (JA) and indole-3-acetic acid (IAA) in yellow lupin (Lupinus luteus L.). The concentration of JA peaked during anther dehiscence when IAA level was low, whereas the inverse relationship was specific to anther senescence. Cellular and tissue localization of JA and IAA, in conjunction with broad expression profile for genes involved in biosynthesis, signalling, response, and homeostasis under different conditions, allowed to complete and define the role of studied phytohormones during late anther development, as well as predict events triggered by them. The development/degeneration of septum and anther wall cells, dehydration of epidermis, and rupture of stomium may involve JA signalling, while the formation of secondary thickening in endothecial cell walls is rather JA independent. The IAA is involved in programmed cell death (PCD)-associated processes during anther senescence but does not exclude its participation in the anther dehiscence processes, mainly related to cell disintegration and degeneration. A detailed understanding of these multistage processes, especially at the level of phytohormonal interplay, can contribute to the effective control of male fertility, potentially revolutionizing the breeding of L. luteus.


Assuntos
Ciclopentanos , Flores , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Lupinus , Oxilipinas , Reguladores de Crescimento de Plantas , Ácidos Indolacéticos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Lupinus/metabolismo , Lupinus/crescimento & desenvolvimento , Lupinus/efeitos dos fármacos , Flores/metabolismo , Flores/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transdução de Sinais
3.
Anim Cogn ; 26(5): 1705-1711, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37505424

RESUMO

The efficiency of aposematic colouration of prey is based on the innate bias or facilitation of avoidance learning of predators. In many toxic bufonids, larvae are uniformly black, which is considered a warning signal. We compared fish predation on normal (black) and 'transient albino' (greyish) common toad Bufo bufo tadpoles that did not differ in toxicity or activity. In a two-stage experiment, each fish was presented with tadpoles of one colour in the first trial and the other colour in a subsequent trial. While tadpoles sampled by fish were typically not ingested, some died from injuries. The attack rate did not differ between tadpole phenotypes nor trials, irrespective of which phenotype was the first exposed to the fish. However, during the second trial, the sampled tadpoles, independent of colouration, were mouthed by fish for shorter periods and tadpole mortality decreased. The duration of mouthing also declined with an increasing number of attacks during subsequent trials. We conclude that in single-species prey populations, black tadpole colouration is not a warning signal as it does not accelerate predator learning about prey unprofitability. Our results indicate that with growing experience, predators sample potentially toxic prey more cautiously. This may explain why natural selection does not eliminate aposematic morphs even if predators continuously sample conspicuous prey.


Assuntos
Aprendizagem da Esquiva , Peixes , Animais , Larva , Comportamento Predatório
4.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569754

RESUMO

The maturation of seeds is a process of particular importance both for the plant itself by assuring the survival of the species and for the human population for nutritional and economic reasons. Controlling this process requires a strict coordination of many factors at different levels of the functioning of genetic and hormonal changes as well as cellular organization. One of the most important examples is the transcriptional activity of the LAFL gene regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2), as well as hormonal homeostasis-of abscisic acid (ABA) and gibberellins (GA) in particular. From the nutritional point of view, the key to seed development is the ability of seeds to accumulate large amounts of proteins with different structures and properties. The world's food deficit is mainly related to shortages of protein, and taking into consideration the environmental changes occurring on Earth, it is becoming necessary to search for a way to obtain large amounts of plant-derived protein while maintaining the diversity of its origin. Yellow lupin, whose storage proteins are conglutins, is one of the plant species native to Europe that accumulates large amounts of this nutrient in its seeds. In this article we have shown the key changes occurring in the developing seeds of the yellow-lupin cultivar Taper by means of modern molecular biology techniques, including RNA-seq, chromatographic techniques and quantitative PCR analysis. We identified regulatory genes fundamental to the seed-filling process, as well as genes encoding conglutins. We also investigated how exogenous application of ABA and GA3 affects the expression of LlLEC2, LlABI3, LlFUS3, and genes encoding ß- and δ-conglutins and whether it results in the amount of accumulated seed storage proteins. The research shows that for each species, even related plants, very specific changes can be identified. Thus the analysis and possibility of using such an approach to improve and stabilize yields requires even more detailed and extended research.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lupinus , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Lupinus/genética , Lupinus/metabolismo , Arabidopsis/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445848

RESUMO

The main aim of this study was to understand the regulation of the biosynthesis of phytohormones as signaling molecules in the defense mechanisms of pea seedlings during the application of abiotic and biotic stress factors. It was important to identify this regulation at the molecular level in Pisum sativum L. seedlings under the influence of various concentrations of lead-i.e., a low concentration increasing plant metabolism, causing a hormetic effect, and a high dose causing a sublethal effect-and during feeding of a phytophagous insect with a piercing-sucking mouthpart-i.e., pea aphid (Acyrthosiphon pisum (Harris)). The aim of the study was to determine the expression level of genes encoding enzymes of the biosynthesis of signaling molecules such as phytohormones-i.e., jasmonates (JA/MeJA), ethylene (ET) and abscisic acid (ABA). Real-time qPCR was applied to analyze the expression of genes encoding enzymes involved in the regulation of the biosynthesis of JA/MeJA (lipoxygenase 1 (LOX1), lipoxygenase 2 (LOX2), 12-oxophytodienoate reductase 1 (OPR1) and jasmonic acid-amido synthetase (JAR1)), ET (1-aminocyclopropane-1-carboxylate synthase 3 (ACS3)) and ABA (9-cis-epoxycarotenoid dioxygenase (NCED) and aldehyde oxidase 1 (AO1)). In response to the abovementioned stress factors-i.e., abiotic and biotic stressors acting independently or simultaneously-the expression of the LOX1, LOX2, OPR1, JAR1, ACS3, NCED and AO1 genes at both sublethal and hormetic doses increased. Particularly high levels of the relative expression of the tested genes in pea seedlings growing at sublethal doses of lead and colonized by A. pisum compared to the control were noticeable. A hormetic dose of lead induced high expression levels of the JAR1, OPR1 and ACS3 genes, especially in leaves. Moreover, an increase in the concentration of phytohormones such as jasmonates (JA and MeJA) and aminococyclopropane-1-carboxylic acid (ACC)-ethylene (ET) precursor was observed. The results of this study indicate that the response of pea seedlings to lead and A. pisum aphid infestation differed greatly at both the gene expression and metabolic levels. The intensity of these defense responses depended on the organ, the metal dose and direct contact of the stress factor with the organ.


Assuntos
Afídeos , Reguladores de Crescimento de Plantas , Animais , Reguladores de Crescimento de Plantas/metabolismo , Pisum sativum/metabolismo , Afídeos/fisiologia , Etilenos/metabolismo , Ácido Abscísico/metabolismo , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Planta ; 257(1): 23, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539632

RESUMO

MAIN CONCLUSION: Indole-3-acetyl-myo-inositol biosynthesis is regulated during maize seedling development and in response to drought and cold stress. The main purpose of this pathway is maintenance of auxin homeostasis. Indole-3-acetic acid (IAA) conjugation to myo-inositol is a part of a mechanism controlling free auxin level in maize. In this work, we investigated changes in the indole-3-acetyl-myo-inositol (IAInos) biosynthesis pathway in 3-d- and 6-d-old maize seedlings and germinating seeds as well as in seedlings subjected to drought and cold stress to evaluate a role of this pathway in maize development and stress response. In germinating seeds, activity of the enzymes involved in IAInos biosynthesis remains unchanged between 3-d- and 6-d-old material but increases in coleoptiles and radicles of the seedlings. Under cold stress, in germinating seeds and in coleoptiles, activity of the enzymes decreases and increases, respectively; however, it does not entail changes in auxin level. In drought-exposed germinating maize seeds, totally diminished activities of IAInos synthesis pathway enzymes resulted in almost twofold increase of free IAA content. Similar increase of auxin level was observed in radicles of drought-subjected seedlings together with lack of catalytic activity of the first enzyme of the pathway. Exogenous IAInos has no effect on the level of non-enzymatic antioxidant, ascorbate. It has also either no effect on the protein carbonylation and lipid peroxidation, or it affects it in a similar way as exogenously applied IAA and myo-inositol, which are products of IAInos hydrolysis. Thus, IAInos biosynthesis pathway acts in maize development and stress responses by regulation of free IAA concentration, as IAInos itself does not appear to have a distinct role in these processes.


Assuntos
Reguladores de Crescimento de Plantas , Plântula , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Zea mays/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Homeostase , Estresse Fisiológico , Inositol/metabolismo
7.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531938

RESUMO

Soluble sugars such as sucrose, glucose and fructose in plant host cells not only play the role as donors of carbon skeletons, but they may also induce metabolic signals influencing the expression of defense genes. These metabolites function in a complex network with many bioactive molecules, which independently or in dialogue, induce successive defense mechanisms. The aim of this study was to determine the involvement of sucrose and monosaccharides as signaling molecules in the regulation of the levels of phytohormones and hydrogen peroxide participating in the defense responses of Lupinus luteus L. to a hemibiotrophic fungus Fusarium oxysporum Schlecht f. sp. lupini. A positive correlation between the level of sugars and postinfection accumulation of salicylic acid and its glucoside, as well as abscisic acid, was noted. The stimulatory effect of sugars on the production of ethylene was also reported. The protective role of soluble sugars in embryo axes of yellow lupine was seen in the limited development of infection and fusariosis. These results provide evidence for the enhanced generation of signaling molecules both by sugar alone as well as during the crosstalk between sugars and infection caused by F. oxysporum. However, a considerable postinfection increase in the level of these signaling molecules under the influence of sugars was recorded. The duration of the postinfection generation of these molecules in yellow lupine was also variable.


Assuntos
Fusarium/patogenicidade , Lupinus/metabolismo , Lupinus/microbiologia , Doenças das Plantas/etiologia , Açúcares/metabolismo , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigenases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Sementes/metabolismo , Superóxido Dismutase/metabolismo
8.
BMC Plant Biol ; 19(1): 57, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30727960

RESUMO

BACKGROUND: Sugar beet is a highly salt-tolerant crop. However, its ability to withstand high salinity is reduced compared to sea beet, a wild ancestor of all beet crops. The aim of this study was to investigate transcriptional patterns associated with physiological, cytological and biochemical mechanisms involved in salt response in these closely related subspecies. Salt acclimation strategies were assessed in plants subjected to either gradually increasing salt levels (salt-stress) or in excised leaves, exposed instantly to salinity (salt-shock). RESULT: The majority of DEGs was down-regulated under stress, which may lead to certain aspects of metabolism being reduced in this treatment, as exemplified by lowered transpiration and photosynthesis. This effect was more pronounced in sugar beet. Additionally, sugar beet, but not sea beet, growth was restricted. Silencing of genes encoding numerous transcription factors and signaling proteins was observed, concomitantly with the up-regulation of lipid transfer protein-encoding genes and those coding for NRTs. Bark storage protein genes were up-regulated in sugar beet to the level observed in unstressed sea beet. Osmotic adjustment, manifested by increased water and proline content, occurred in salt-shocked leaves of both genotypes, due to the concerted activation of genes encoding aquaporins, ion channels and osmoprotectants synthesizing enzymes. bHLH137 was the only TF-encoding gene induced by salt in a dose-dependent manner irrespective of the mode of salt treatment. Moreover, the incidence of bHLH-binding motives in promoter regions of salinity-regulated genes was significantly greater than in non-regulated ones. CONCLUSIONS: Maintaining homeostasis under salt stress requires deeper transcriptomic changes in the sugar beet than in the sea beet. In both genotypes salt shock elicits greater transcriptomic changes than stress and it results in greater number of up-regulated genes compared to the latter. NRTs and bark storage protein may play a yet undefined role in salt stress-acclimation in beet. bHLH is a putative regulator of salt response in beet leaves and a promising candidate for further studies.


Assuntos
Beta vulgaris/metabolismo , Plantas Tolerantes a Sal/metabolismo , Ácido Abscísico/metabolismo , Beta vulgaris/anatomia & histologia , Beta vulgaris/genética , Beta vulgaris/fisiologia , Clorofila/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Prolina/metabolismo , Característica Quantitativa Herdável , Estresse Salino , Plantas Tolerantes a Sal/fisiologia
9.
Molecules ; 22(9)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837107

RESUMO

The aim of this study was to investigate the effect of an abiotic factor, i.e., lead at various concentrations (low causing a hormesis effect and causing high toxicity effects), on the generation of signalling molecules in pea (Pisum sativum L. cv. Cysterski) seedlings and then during infestation by the pea aphid (Acyrthosiphon pisum Harris). The second objective was to verify whether the presence of lead in pea seedling organs and induction of signalling pathways dependent on the concentration of this metal trigger defense responses to A. pisum. Therefore, the profile of flavonoids and expression levels of genes encoding enzymes of the flavonoid biosynthesis pathway (phenylalanine ammonialyase and chalcone synthase) were determined. A significant accumulation of total salicylic acid (TSA) and abscisic acid (ABA) was recorded in the roots and leaves of pea seedlings growing on lead-supplemented medium and next during infestation by aphids. Increased generation of these phytohormones strongly enhanced the biosynthesis of flavonoids, including a phytoalexin, pisatin. This research provides insights into the cross-talk between the abiotic (lead) and biotic factor (aphid infestation) on the level of the generation of signalling molecules and their role in the induction of flavonoid biosynthesis.


Assuntos
Afídeos , Flavonoides/metabolismo , Chumbo/farmacologia , Pisum sativum/fisiologia , Pisum sativum/parasitologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/genética , Metaboloma , Metabolômica/métodos , Doenças das Plantas/parasitologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Pterocarpanos/metabolismo , Ácido Salicílico/metabolismo , Plântula/crescimento & desenvolvimento
10.
J Plant Physiol ; 293: 154168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176282

RESUMO

Callus sustained growth relies heavily on auxin, which is supplied to the culture medium. Surprisingly, there is a noticeable absence of information regarding the involvement of carrier-mediated auxin polar transport gene in callus growth regulation. Here, we delve into the role of the AUXIN RESISTANT 1 (AUX1) influx transporter in the regulation of callus growth, comparing the effects under conditions of light versus darkness. It was observed that callus growth was significantly enhanced under light illumination. This growth-stimulatory effect was accompanied by a decrease in the levels of free auxin within the callus cells when compared to conditions of darkness. In the aux1-22 mutant callus, which lacks functional AUX1, there was a substantial reduction in IAA levels. Nonetheless, the mutant callus exhibited markedly higher growth rates compared to the wild type. This suggests that the reduction in exogenous auxin uptake through the AUX1-dependent pathway may prevent the overaccumulation of growth-restricting hormone concentrations. The growth-stimulatory effect of AUX1 deficiency was counteracted by nonspecific auxin influx transport inhibitors. This finding shows that other auxin influx carriers likely play a role in facilitating the diffusion of auxin from the culture medium to sustain high growth rates. AUX1 was primarily localized in the plasma membranes of the two outermost cell layers of the callus clump and the parenchyma cells adjacent to tracheary elements. Significantly, these locations coincided with the regions of maximal auxin concentration. Consequently, it can be inferred that AUX1 mediates the auxin distribution within the callus.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Raízes de Plantas/metabolismo
11.
Postepy Biochem ; 59(1): 83-8, 2013.
Artigo em Polonês | MEDLINE | ID: mdl-23821946

RESUMO

Abscisic acid is one of the plant hormones that determines normal growth and development, i.e. seeds ripening and germination, stomata opening and closure, flowering and stress responses. An appropriate level of endogenous ABA plays a key role in the regulation of most of these processes. Its content in a particular tissue is a balance between the rate of its biosynthesis, oxidative degradation and formation of inactive derivatives (mainly ester). The progress on ABA metabolism was relatively slow in the past. Application of modern molecular biology methods let the most of genes encoding enzymes involved in the regulation of ABA metabolism be identified and contributed to the understanding of its action.


Assuntos
Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/biossíntese , Germinação , Metabolismo dos Lipídeos , Metabolismo , Mutação , Reguladores de Crescimento de Plantas/biossíntese , Sementes/metabolismo , Transdução de Sinais
12.
Environ Sci Pollut Res Int ; 30(16): 47742-47754, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745351

RESUMO

Insecticides are dedicated to impair the insect organisms, but also have an impact on other, non-target organisms, including humans. In this way, they became important risk factor for disturbance of physiological homeostasis and can be involved in the development of diseases or in deterioration of existing conditions. The influence of sublethal doses of various insecticides on vertebrates' and invertebrates' organisms has been previously observed. In this paper, we have evaluated the impact of exposure to extremely low dose of neurotoxin, bendiocarb (0.1 nM), a commonly used carbamate insecticide on a model organism in neurobiology-Periplaneta americana. The assessment was performed on all levels of animal organism from molecular (oxidative stress parameters: phosphorylation level of proteins, cAMP level, protein kinase A and C levels, and octopamine) to physiological (heart beat and gas exchange tests) and behavioral (motor skills assay, grooming test). Exposure to such a low level of bendiocarb did not cause direct paralysis of insects, but changed their grooming behavior, decreased heart rate, and increased gas exchange. We also observed the increased parameters of oxidative stress as well as stressogenic response to 0.1 nM bendiocarb exposure. Exposure to a trace amount of bendiocarb also increased sensitivity to effective doses of the same insecticide, thus acts as preconditioning. These results force us to reconsider the possible risk from frequent/continuous exposure to traces of pesticide residues in the environment to human health.


Assuntos
Baratas , Inseticidas , Periplaneta , Animais , Humanos , Inseticidas/toxicidade , Fenilcarbamatos
13.
Postepy Biochem ; 58(1): 14-25, 2012.
Artigo em Polonês | MEDLINE | ID: mdl-23214125

RESUMO

Gibberellins (GA), as one of the most important phytohormones, control different aspect of plant growth and development such as seed germination, stem elongation and floral induction. Although identified more than a hundred and thirty GA, only a small number of them are biological active. Many non-bioactive GA are present in plant tissues as precursors or deactivated metabolites. Biochemical and genetic approaches have led to the recognition most of the genes that encode GA biosynthesis and deactivation enzymes, and conducted investigation has helped us to better understand GA functions in plants. Many enzymes involved in GA metabolism are multifunctional and therefore fewer enzymes than might be expected are required to created the various gibberellins structures. In this review, we summarized current knowledge on the GA biosynthesis and deactivation pathways in plants and showed precise characteristic of genes and encoding protein which are involved in gibberellins metabolism.


Assuntos
Giberelinas/biossíntese , Giberelinas/química , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/química , Plantas/metabolismo , Modelos Moleculares , Plantas/genética
14.
Postepy Biochem ; 58(1): 26-33, 2012.
Artigo em Polonês | MEDLINE | ID: mdl-23214126

RESUMO

Jasmonates are plant hormones involved in many growth and development processes. They also participate in plant defense responses. Current progress in the study on biosynthesis and signaling of jasmonates has contributed to the understanding of the mechanisms regulating concentration of these hormones in the cell. Sustaining a proper level of jasmonates allow the plant to respond appropriately to changing conditions. It is possible due to the large number of enzymes and genes involved in biosynthesis of these hormones as well as multilevel control of their expression.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Plantas/metabolismo , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Lipoxigenase/classificação , Lipoxigenase/metabolismo , Filogenia , Plantas/genética
15.
Front Plant Sci ; 13: 950796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172555

RESUMO

Nitrogen (N) is an important element for plant growth and development. Although several studies have examined plants' response to N deficiency, studies on plants' response to excess N, which is common in fertilizer-based agrosystems, are limited. Therefore, the aim of this study was to examine the response of barley to excess N conditions, specifically the root response. Additionally, genomic mechanism of excess N response in barley was elucidated using transcriptomic technologies. The results of the study showed that barley MADS27 transcription factor was mainly expressed in the roots and its gene contained N-responsive cis-regulatory elements in the promoter region. Additionally, there was a significant decrease in HvMADS27 expression under excess N condition; however, its expression was not significantly affected under low N condition. Phenotypic analysis of the root system of HvMADS27 knockdown and overexpressing barley plants revealed that HvMADS27 regulates barley root architecture under excess N stress. Further analysis of wild-type (WT) and transgenic barley plants (hvmads27 kd and hvmads27 c-Myc OE) revealed that HvMADS27 regulates the expression of HvBG1 ß-glucosidase, which in turn regulates abscisic acid (ABA) level in roots. Overall, the findings of this study showed that HvMADS27 expression is downregulated in barley roots under excess N stress, which induces HvBG1 expression, leading to the release of ABA from ABA-glucose conjugate, and consequent shortening of the roots.

16.
Biodegradation ; 22(4): 699-707, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20862526

RESUMO

This study evaluated biodegradation of the insecticide deltamethrin (1 µg l(-1)) by pure cultures of neustonic (n = 25) and epiphytic (n = 25) bacteria and by mixed cultures (n = 1), which consisted of a mixture of 25 bacterial strains isolated from the surface microlayer (SM ≈ 250 µm) and epidermis of the Common Reed (Phragmites australis, (Cav.) Trin. ex Steud.) growing in the littoral zone of eutrophic lake Chelmzynskie. Results indicate that neustonic and epiphytic bacteria are characterized by a similar average capacity to degrade deltamethrin. After a 15-day incubation, bacteria isolated from the surface microlayer reduced the initial concentration of deltamethrin by 60%, while the average effectiveness of the bacteria found on the Common Reed equaled 47%.


Assuntos
Bactérias/isolamento & purificação , Poluição Ambiental/prevenção & controle , Água Doce/microbiologia , Consórcios Microbianos/fisiologia , Nitrilas/metabolismo , Poaceae/microbiologia , Piretrinas/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Eutrofização , Violeta Genciana , Inseticidas/metabolismo , Fenazinas , Polônia , Microbiologia da Água
17.
Postepy Biochem ; 55(3): 337-41, 2009.
Artigo em Polonês | MEDLINE | ID: mdl-19928591

RESUMO

Significant progress which was made during last few years in research of jasmonic acid signaling pathway yielded surprising information about chemical form of a signaling molecule of the hormone, which turned out to be its conjugate with amino acid isoleucine. Function of jasmonic acid receptor is more and more frequently attributed to COI1 protein which is structurally and functionally similar to the auxin receptor TIR1. Signal perception takes place in the nucleus and leads to the activation of SCF(COI1) ubiquitine ligase and consequently to proteolysis of transcription repressors, the JAZ proteins. Reduced pool of these negative regulators enables to activate the transcription factors (i. e. ERF1, WRKY70, MYC2), as well as expression of genes involved in defense responses of plants (i. e. PDF1.2, VSP1, CHI-B). Jasmonic acid signal transduction pathway, is also subjected to complicated regulations, including both positive, and negative feedbacks, which enable plants react adequately to variable environmental conditions.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
18.
Pol J Microbiol ; 57(3): 221-30, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19004243

RESUMO

The paper presents a study on biodegradation of carbendazim (1 mg/l) by homogeneous cultures of epiphytic (n = 25) and neustonic (n = 25) bacteria and heterogeneous (n = 1) cultures containing a mixture of 25 bacterial strains isolated from epidermis of the Common Reed (Phragmites australis, (Cav.) Trin. ex Steud.) and surface microlayer (SM approximately 250 microm) of eutrophic lake Chelmzynskie. Results indicate that epiphytic bacteria are characterized by higher average capacity to decompose carbendazim than neustonic bacteria (p < 0.05). The half-life ofcarbendazim in epiphytic bacterial cultures equaled an average of 60 days. In the same period, neustonic bacteria reduced the concentration of the fungicide by 31%. The level of carbendazim biodegradation in mixed cultures of epiphytic and neustonic bacteria after 20-day incubation was lower than the biodegradation level in homogeneous cultures. Sixty-day homogeneous cultures of epiphytic and neustonic bacteria were characterized by a higher mean level of carbendazim biodegradation than mixed cultures. After 40-day incubation, mean values of biodegradation of the fungicide in homogeneous and mixed cultures were similar. It was demonstrated that among epiphytic bacteria, Pseudomonas luteola was the most efficient organism in reducing the concentration of carbendazim. Among neustonic bacteria, Burkholderia cepacia and Aeromonas hydrophila were the most effective in degradation of the fungicide.


Assuntos
Bactérias/metabolismo , Benzimidazóis/metabolismo , Biodegradação Ambiental , Carbamatos/metabolismo , Eutrofização , Água Doce/microbiologia , Herbicidas/metabolismo , Água Doce/química , Polônia
19.
Postepy Biochem ; 54(1): 99-106, 2008.
Artigo em Polonês | MEDLINE | ID: mdl-18610587

RESUMO

Ethylene is involved in the regulation of many growth and developmental processes in plants. Signaling pathways of the hormone are activated by five receptors, which are localized in membranes of endoplasmic reticulum and are similar to bacterial two-component histidine kinases. In the air, ethylene receptors activate CTR1 protein, which is a negative regulator (repressor) of nuclear protein--EIN2. In turn, EIN2 is an activator of transcriptional factors cascade responsible for the regulation of the expression of ethylene response genes. The level of EIN3, as well as other elements of ethylene signal transduction pathway, is subjected to complicated regulations on transcriptional and posttranslational levels, in which other internal and environmental factors are involved.


Assuntos
Retículo Endoplasmático/fisiologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA , Expressão Gênica , Proteínas Nucleares/fisiologia , Proteínas Quinases/fisiologia , Receptores de Superfície Celular/fisiologia , Fatores de Transcrição/fisiologia
20.
Postepy Biochem ; 53(1): 66-73, 2007.
Artigo em Polonês | MEDLINE | ID: mdl-17718390

RESUMO

Ethylene is one of the plant hormones that controls growth and development. There are many responses regulated via ethylene in response to exogenous stimuli. Research on ethylene biosynthesis and the signalling pathway enabled us to understand the mechanism of the regulation of these responses. Different temporal and spatial expression of genes encoding enzymes involved in ethylene biosynthesis is of great importance for the regulation of ethylene responses. Also, post-translational regulation of the enzymes seems to be a key regulatory mechanism for the control of their activity. Because of versatile regulation of its production, ethylene can control plant development at many levels.


Assuntos
Aminoácido Oxirredutases/metabolismo , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/fisiologia , Reguladores de Crescimento de Plantas/biossíntese , Fenômenos Fisiológicos Vegetais , Transdução de Sinais , Aminoácido Oxirredutases/genética , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano , Filogenia , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA