RESUMO
The third most prevalent malignancy to cause mortality is hepatocellular carcinoma (HCC). The Hedgehog (Hh) signaling pathway is activated by binding to the transmembrane receptor Patched-1 (PTCH-1), which depresses the transmembrane G protein-coupled receptor Smoothened (SMO). This study was performed to examine the preventative and therapeutic effects of cannabidiol in adult rats exposed to diethyl nitrosamine (DENA)-induced HCC.A total of 50 male rats were divided into five groups of 10 rats each. Group I was the control group. Group II received intraperitoneal (IP) injections of DENA for 14 weeks. Group III included rats that received cannabidiol (CBD) orally (3-30 mg/kg) for 2 weeks and DENA injections for 14 weeks. Group IV rats received oral CBD for 2 weeks before 14 weeks of DENA injections. Group V included rats that received CBD orally for 2 weeks after their last injection of DENA. Measurements were made for alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and alpha fetoprotein (AFP). Following total RNA extraction, Smo, Hhip, Ptch-1, and Gli-1 expressions were measured using quantitative real-time polymerase chain reaction (qRT-PCR). A histopathological analysis of liver tissues was performed.The liver enzymes, oxidant-antioxidant state, morphological, and molecular parameters of the adult male rat model of DENA-induced HCC showed a beneficial improvement after CBD administration. In conclusion, by focusing on the Hh signaling system, administration of CBD showed a beneficial improvement in the liver enzymes, oxidant-antioxidant status, morphological, and molecular parameters in the DENA-induced HCC in adult male rats.
Assuntos
Canabidiol , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Masculino , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Proteínas Hedgehog/genética , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Canabidiol/efeitos adversos , Antioxidantes , Dietilnitrosamina/efeitos adversos , Transdução de Sinais , Oxidantes/efeitos adversos , Expressão GênicaRESUMO
This study assessed the ability of formulated curcumin-loaded chitosan nanoparticles (CU-CS-NPs) to reduce the kidney damage resulting from fenpropathrin (FPN) in rats compared to curcumin (CU) in rats. Sixty male Sprague Dawley rats were separated into six groups and orally administered 1 mL/kg b.wt corn oil, 50 mg CU/kg b.wt, 50 mg CU-CS-NPs /kg b.wt., 15 mg FPN /kg b.wt, CU+ FPN or CU-CS-NPs + FPN for 60 days. Then, serum renal damage products were assessed. Total antioxidant capacity, reactive oxygen species, interleukin 1ß (IL-1ß), malondialdehyde, NF-κB P65, cleaved-Caspase-1, and Caspase-8 were estimated in kidney homogenates. The cleaved Caspase-3 and TNF-α immunoexpression and pyroptosis-related genes were determined in renal tissues. The results showed that CU-CS-NPS significantly repressed the FPN-induced increment in kidney damage products (urea, uric acid, and creatinine). Moreover, the FPN-associated hypo-proteinemia, renal oxidative stress and apoptotic reactions, and impaired renal histology were considerably repaired by CU and CU-CS-NPs. Additionally, compared to FPN-exposed rats, CU, and CU-CS-NPs-treated rats had considerably lower immunoexpression of cleaved Caspase-3 and TNF-α in renal tissue. The pyroptosis-related genes NLRP3, GSDMD, IL-18, Caspase-3, Caspase-1, IL-1ß, Caspase-8, TNF-α, and NF-κB dramatically upregulated by FPN exposure in the renal tissues. Yet, in CU and CU-CS-NPs-treated rats, the gene above expression deviations were corrected. Notably, CU-CS-NPs were superior to CU in preventing oxidative damage and inflammation and regulating pyroptosis in the renal tissues of the FPN-exposed group. The results of the present study conclusively showed the superior favorable effect of CU-CS-NPs in counteracting renal impairment linked to environmental pollutants.
Assuntos
Quitosana , Curcumina , Piretrinas , Piroptose , Animais , Masculino , Ratos , Caspase 1 , Caspase 3 , Caspase 8 , Curcumina/farmacologia , Rim , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piretrinas/toxicidade , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfaRESUMO
Bacterial infection is considered one of the major issues in fish culturing that results in economic losses. Metal nanoparticles are a cutting-edge and effective disease management and preventive strategy because of their antibacterial ability. In this investigation, the selenium nanoparticles were prepared by a biological method using Nelumbo nucifera leaves extract. The in-vitro antibacterial activity of N. nucifera synthesized selenium nanoparticles (NN-SeNPs) was tested against Aeromonas veronii. A treatment assay was conducted on 210 Oreochromis niloticus (average body weight: 27 ± 2.00 g). A preliminary approach was conducted on 90 fish for determination of the therapeutic concentration of NN-SeNPs which was found to be 4 mg/L. Fish (n = 120) were categorized into four groups for 10 days; G1 (control) and G2 (NN-SeNPs) were non-challenged and treated with 0 and 4 mg/L NN-SeNPs, respectively. While, G3 and G4 were infected with 2 × 106 CFU/mL of A. veronii and treated with 0 and 4 mg/L NN-SeNPs, respectively. NN-SeNPs exhibited an inhibition zone against A. veronii with a diameter of 16 ± 1.25 mm. The A. veronii infection increased the hepato-renal biomarkers (alanine and aspartate aminotransferases and creatinine) than the control group. An oxidative stress was the consequence of A. veronii infection (higher malondialdehyde and hydrogen peroxide levels with lower glutathione peroxidase superoxide, dismutase, and catalase activity). A. veronii infection resulted in lower immunological biomarker values (immunoglobulin M, lysozyme, and complement 3) with higher expression of the inflammatory cytokines (interleukin-1ß and tumor necrosis factor-É) as well as lower expression of the anti-inflammatory cytokines (interleukin-10 and transforming growth factor-ß). Therapeutic application with 4 mg/L NN-SeNPs prevented the disease progression; and modulated the hepato-renal function disruptions, oxidant-immune dysfunction, as well as the pro/anti-inflammatory cytokines pathway in the A. veronii-infected fish. These findings suggest that NN-SeNPs, employed as a water therapy, can safeguard fish from the harmful effects of A. veronii and serve as a promising antibacterial agent for sustainable aquaculture.
Assuntos
Ciclídeos , Doenças dos Peixes , Nanopartículas Metálicas , Nanopartículas , Nelumbo , Selênio , Animais , Antioxidantes/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Aeromonas veronii , Citocinas/metabolismo , Dieta , Anti-Inflamatórios/metabolismo , Antibacterianos/metabolismo , Ração Animal/análiseRESUMO
Liposomal encapsulated phytogenics, such as liposomal hesperetin, are considered novel substitutes for antibiotics in the broiler industry owing to their improved nutritional and therapeutic properties. Therefore, our key goal was to investigate liposomal hesperetin impact on broiler growth performance, health, antioxidant status, tight junction proteins (TJP), and resistance against Listeria monocytogenes. Four broiler groups were fed 0, 150, 250, or 400â mg/kg of liposomal hesperetin-supplemented diets and experimentally infected with L. monocytogenes strain. Herein, liposomal hesperetin, especially at higher concentrations, augmented broilers FCR with upregulation of genes encoding TJP (occludin, JAM-2, MUC-2), and antioxidant attributes (GPX-1, SOD-1, CAT, HO-1, NQO1, COX2), which reflect enhancing health and welfare of broilers. Muscle antioxidant biomarkers were enhanced; meanwhile, muscle MDA, ROS, and H2O2 levels were reduced in response to 400â mg/kg of liposomal hesperetin. Liposomal hesperetin fortification reduced L. monocytogenes loads and expression levels of its virulence-related genes (flaA, hlyA, and ami). Remarkably, histopathological alterations in intestinal and brain tissues of L. monocytogenes-infected broilers were restored post-inclusion at higher levels of liposomal hesperetin, which reflects increase of the birds' resistance to L. monocytogenes infection. Transcription levels of genes encoding cytokines/chemokines (MyD88, AVBD6, CCL20, IL-1ß, IL-18), and autophagy (Bcl-2, LC3, AMPK, AKT, CHOP, Bip, p62, XBP1) were ameliorated following dietary liposomal hesperetin fortification, which suggests enhancement of the birds' immunity and health. Collectively, our research recommends liposomal hesperetin application in broiler diets owing to its promoting impact on growth performance, antioxidant status, immunity, health, and welfare besides its antibacterial, and antivirulence characteristics to fight against L. monocytogenes.
RESUMO
BACKGROUND: Diabetic neuropathy (DN) is recognized as a significant complication arising from diabetes mellitus (DM). Pathogenesis of DN is accelerated by endoplasmic reticulum (ER) stress, which inhibits autophagy and contributes to disease progression. Autophagy is a highly conserved mechanism crucial in mitigating cell death induced by ER stress. Chrysin, a naturally occurring flavonoid, can be found abundantly in honey, propolis, and various plant extracts. Despite possessing advantageous attributes such as being an antioxidant, anti-allergic, anti-inflammatory, anti-fibrotic, and anticancer agent, chrysin exhibits limited bioavailability. The current study aimed to produce a more bioavailable form of chrysin and discover how administering chrysin could alter the neuropathy induced by Alloxan in male rats. METHODS: Chrysin was formulated using PEGylated liposomes to boost its bioavailability and formulation. Chrysin PEGylated liposomes (Chr-PLs) were characterized for particle size diameter, zeta potential, polydispersity index, transmission electron microscopy, and in vitro drug release. Rats were divided into four groups: control, Alloxan, metformin, and Chr-PLs. In order to determine Chr- PLs' antidiabetic activity and, by extension, its capacity to ameliorate DN, several experiments were carried out. These included measuring acetylcholinesterase, fasting blood glucose, insulin, genes dependent on autophagy or stress in the endoplasmic reticulum, and histopathological analysis. RESULTS: According to the results, the prepared Chr-PLs exhibited an average particle size of approximately 134 nm. They displayed even distribution of particle sizes. The maximum entrapment efficiency of 90.48 ± 7.75% was achieved. Chr-PLs effectively decreased blood glucose levels by 67.7% and elevated serum acetylcholinesterase levels by 40% compared to diabetic rats. Additionally, Chr-PLs suppressed the expression of ER stress-related genes (ATF-6, CHOP, XBP-1, BiP, JNK, PI3K, Akt, and mTOR by 33%, 39.5%, 32.2%, 44.4%, 40.4%, 39.2%, 39%, and 35.9%, respectively). They also upregulated the miR-301a-5p expression levels by 513% and downregulated miR-301a-5p expression levels by 65%. They also boosted the expression of autophagic markers (AMPK, ULK1, Beclin 1, and LC3-II by 90.3%, 181%, 109%, and 78%, respectively) in the sciatic nerve. The histopathological analysis also showed that Chr-PLs inhibited sciatic nerve degeneration. CONCLUSION: The findings suggest that Chr-PLs may be helpful in the protection against DN via regulation of ER stress and autophagy.
Assuntos
Autofagia , Diabetes Mellitus Experimental , Neuropatias Diabéticas , Estresse do Retículo Endoplasmático , Flavonoides , Lipossomos , Animais , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Ratos , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/prevenção & controle , Polietilenoglicóis/farmacologia , Aloxano , Ratos Wistar , Ratos Sprague-DawleyRESUMO
Diabetic foot ulcer (DFU) represented the most feared diabetic complication that caused the hospitalization of the diabetic patient. DFU was usually characterized with delayed healing as the diabetic neuropathy, angiopathy, and ulcer concomitant infections, among them, are multidrug-resistant (MDR) bacteria that emphasized the clinical importance for developing new therapeutic strategy with safe and effective alternatives for the antibiotics to overcome DFU-MDR bacterial infection. Bacteriophage therapy was considered a novel approach to eradicate the MDR, but its role in the polymicrobial infection of the DFU remains elusive. Thus, the current work was designed to investigate the effect of the topical application of the phage cocktail on the healing of the diabetic wound infected with clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella variicola, Escherichia coli, and Proteus mirabilis. Bacterial isolation was performed from clinical hospitalized and non-hospitalized cases of DFU, identified morphologically, biochemically, molecularly via 16 s rRNA sequencing, and typed for the antibiotic resistance pattern. Moreover, phages were isolated from the aforementioned clinical isolates and identified with electron microscope. Forty-five adult male Sprague-Dawley rats were assigned in 3 groups (15 rats each), namely, the diabetic infected wound group, diabetic infected wound ceftriaxone-treated group, and the diabetic infected wound phage cocktail-treated group. The results revealed that phage cocktail had a superior effect over the ceftriaxone in wound healing parameters (wound size, wound index, wound bacterial load, and mRNA expression); wound healing markers (Cola1a, Fn1, MMP9, PCNA, and TGF-ß); inflammatory markers (TNF-α, NF-κß, IL-1ß, IL-8, and MCP-1); anti-inflammatory markers (IL-10 and IL-4); and diabetic wound collagen deposition; and also the histomorphic picture of the diabetic infected wound. Based on the current findings, it could be speculated that phage therapy could be considered a novel antibiotic substitute in the DFU with MDR-polymicrobial infection therapeutic strategies.
Assuntos
Coinfecção , Diabetes Mellitus , Pé Diabético , Terapia por Fagos , Masculino , Ratos , Animais , Pé Diabético/complicações , Pé Diabético/tratamento farmacológico , Ceftriaxona , Coinfecção/complicações , Coinfecção/tratamento farmacológico , Ratos Sprague-Dawley , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Diabetes Mellitus/tratamento farmacológicoRESUMO
Aeromonas veronii is a pathogenic bacterium associated with various diseases in aquaculture. However, few studies address the antibacterial activity using nanoparticles (NPs). Hence, the current study is innovative to evaluate the antibacterial efficacy of silica nanoparticles (SiNPs) against A. veronii infection in-vitro with a trial for treatment in-vivo. Primarily, we assessed the in-vitro antibacterial activity against A. veronii. Further, we investigated the hematological profile, immune-antioxidant response, and gene expression of African catfish (Clarias gariepinus) in response to SiNPs exposure and the A. veronii challenge. Fish (N = 120; weight: 90 ± 6.19 g) were distributed into four groups (30 fish/group) for a ten-days-treatment trial. The first (control) and second (SiNPs) groups were treated with 0 mg/L and 20 mg/L SiNPs in water, respectively. The third (A. veronii) and fourth (SiNPs + A. veronii) groups were treated with 0 mg/L and 20 mg/L SiNPs in water, respectively, and infected with A. veronii (1.5 × 107 CFU/mL). Results demonstrated that SiNPs displayed an in-vitro antibacterial activity against A. veronii with a 21 mm inhibitory zone. A. veronii infection caused a high mortality rate (56.67%) and substantial reductions in hematological indices and immune indicators [nitric oxide (NO) and immunoglobulin M (IgM)]. Additionally, marked decline in the level of antioxidants [superoxide dismutase (SOD), catalase (CAT), and reduced glutathione content (GSH)] as well as down-regulation in the immune-related genes [interleukins (IL-1ß and IL-8) and tumor necrosis factor-alpha (TNF-α)] and antioxidant-related genes [SOD1, glutathione peroxidase (GPx), and glutathione-S-transferase (GST)] were the consequences of A. veronii infection. Surprisingly, treatment of A. veronii-infected fish with SiNPs lessened the mortality rate, enhanced the blood picture, modulated the immune-antioxidant parameters, and resulted in gene up-regulation. Overall, this study encompasses the significant role of SiNPs, a new versatile tool for combating hematological, immuno-antioxidant alterations, and gene down-regulation induced by A. veronii infection and sustainable aquaculture production.
Assuntos
Peixes-Gato , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanopartículas , Animais , Antioxidantes/metabolismo , Aeromonas veronii/fisiologia , Regulação para Baixo , Expressão Gênica , Peixes-Gato/genética , Peixes-Gato/metabolismoRESUMO
Colon cancer is one of the most common types of cancer worldwide, and its incidence is increasing. Despite advances in medical science, the treatment of colon cancer still poses a significant challenge. This study aimed to investigate the potential protective effects of Adiantum pedatum (AP) extract and/or piceatannol on colon cancer induced via phenylhydrazine (PHZ) in terms of the antioxidant and apoptotic pathways and histopathologic changes in the colons of male albino rats. The rats were randomly divided into eight groups: control, AP extract, piceatannol (P), PHZ, PHZ and AP treatments, PHZ and P treatments, PHZ and both AP and P, and PHZ and prophylaxis with both AP and P. The results demonstrated that PHZ induced oxidative damage, apoptosis, and histopathological changes compared to the control group. However, the administration of AP or P or AP + P as therapy or prophylaxis significantly ameliorated these changes and upregulated the colonic mir-145 and mRNA expression of P53 and PDCD-4 while downregulating the colonic mRNA expression of PI3K, AKT, c-Myc, CK-20, SOX-2, OCT-4, and NanoG compared to the PHZ group. These findings suggest that the candidate drugs may exert their anti-cancer effects through multiple mechanisms, including antioxidant and apoptotic activities.
Assuntos
Adiantum , Neoplasias do Colo , MicroRNAs , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/genética , Adiantum/metabolismo , Antioxidantes/farmacologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , MicroRNAs/genética , Fenil-Hidrazinas , RNA MensageiroRESUMO
Two experiments were conducted in this study, using 250 Oreochromis niloticus (O. niloticus) (average weight 30.28 ± 0.27 g). The first experiment was conducted to investigate the 96-h lethal concentration 50 (LC50) of copper chloride (CuCl2) using the probit analysis, seventy fish was divided into seven different concentration of CuCl2 (0, 22, 23, 24, 25, 26, and 27 mg/L), the accurate Cu concentrations were (1.23, 5.36, 6.02, 6.98, 7.05, 7.93, 8.12 mg/L Cu). The second experiment was conducted for investigating the effect of dietary supplementation with thyme (Thymus vulgaris, T. vulgaris) and sweet basil (Ocimum basilicum, O. basilicum) essential oils (TEO and BEO respectively) against sub-lethal Cu exposure (1/10 96-h LC50 of CuCl2). About 180 fish was divided into six groups in triplicate (10 fish/replicate, 30 fish/group). Group 1 (C) was kept as a control group with no Cu exposure and was fed the control basal diet. Group 2 (C-Cu) was fed the control basal diet and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L) as a sub-lethal concentration of Cu, where the realistic Cu concentration was 3.976 mg/L. Group 3 (TEO) and group 4 (BEO) were fed the diets fortified with 1%TEO and BEO, respectively without exposure to Cu. Group 5 (TEO-Cu) and group 6 (BEO-Cu) were fed the diets fortified with 1%TEO and 1%BEO, respectively, and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L). The growth and behavioral performance, immunological response and its related gene expression, antioxidant status, stress biomarker indicators, apoptosis biomarkers, and histopathological alteration were investigated. The results of the first experiment showed that the 96-h LC50 of CuCl2 in O. niloticus was 25.740 mg/L with lower and upper confidence limits of 25.152 and 26.356 mg/L, respectively. The results of the second experiment showed that sub-lethal Cu exposure induced growth retardation (lowered final body weight, total weight gain, and specific growth rate %), behavioral abnormalities (slower swimming activity and feeding performance), immunosuppression (lowered nitric oxide, complement-3, lysozyme, total proteins, albumin, and globulin), and lowering the hepatic antioxidant functions (higher MDA, and lower SOD, CAT, and GPx) in the exposed fish. Furthermore, alteration in the immune-related genes expression (down-regulation of IL-10 and TGF-ß and up-regulation of IL-1ß, IL-6, IL-8, and TRL-4), hepato-renal dysfunction (elevated ALT, AST, urea, and creatinine), and high levels of serum stress indicators (cortisol and glucose) were markedly evident. sub-lethal Cu toxicity induced significant up-regulation of apoptosis biomarkers involving, nuclear factor-κß (NF-κß), Bcl-2 Associated X-protein (BAX), meanwhile, the expression of B-cell lymphoma 2 (BCL2) and Proliferating cell nuclear antigen (PCNA) was remarkably down-regulated. In addition, apoptosis was also evident by histopathological investigation of branchial, hepatic, and renal sections. TEO and/or BEO dietary supplementation mitigate the destructive impacts of sub-lethal Cu exposure in O. niloticus, depending on the results of our study, it could be concluded that TEO and BEO with a 1% dietary level could be a promising antioxidant, immunostimulant, anti-stress factors, and anti-apoptosis mediators against heavy metal contaminants (Cu) in O. niloticus, providing a solution to the problem of aquatic bodies pollution, consequently aiding in the development of aquaculture industry.
Assuntos
Ciclídeos , Ocimum basilicum , Óleos Voláteis , Thymus (Planta) , Animais , Antioxidantes/metabolismo , Ocimum basilicum/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Óleos Voláteis/toxicidade , Óleos Voláteis/metabolismo , Citocinas/genética , Suplementos Nutricionais/análise , Dieta/veterinária , Biomarcadores/metabolismo , Ração Animal/análiseRESUMO
The current perspective is a pioneer to assess the efficacy of Salvia officinalis leave powder (SOLP) on growth, intestinal enzymes, physiological and antioxidant status, immunological response, and gene expression of Common carp (Cyprinus carpio). We also looked into fish resistance after being challenged with Aeromonas sobria, a pathogenic zoonotic bacteria. Fish (N = 120) were fed four different experimental diets in triplicate for 8 weeks. The control diet (SOLP0 - without SOLP); meanwhile, the other three diets included SOLP of 2, 4, and 8 g kg-1 concentrations (SOLP2, SOLP4, and SOLP8), respectively. Findings demonstrated that fish fed SOLP4 and SOLP8 diets had better growth performance and improved digestion by noticeable enhancing lipase and amylase enzymes activity than other groups. Additionally, the antioxidant (superoxide dismutase and glutathione peroxidase) and immune activities (immunoglobulin M, nitric oxide, and antiprotease) clarified a significant increase (p < 0.05) in SOLP4 and SOLP8 groups. Enriched diets with SOLP4 and SOLP8 exhibited better expression of splenic genes (IL-1ß, IL-6, IL-10, TLR-2, and SOD), intestinal genes (Slc26a6) and (PepT1 or Slc15a1), and muscular genes (IGF-1 and SOD), while MSTN was down-regulated. After 8 weeks of the experimental trial, C. carpio challenged by A. sobria exhibited the highest cumulative mortality (66.67%), while SOLP8-dietary intervention showed the best results in enhancing the fish resistance against A. sobria by lessening mortalities to 13.33% followed by SOLP4 diet (20%). The outcomes indicate that the expression of splenic, muscular, and intestinal genes confirm the efficacy of SOLP on enhancing growth, digestion, and immune-antioxidant status, and recommend the potential use of SOLP especially at 4 g kg-1 level as a valuable natural economic diet additive in C. carpio culture for sustaining aquaculture.
Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Salvia officinalis , Aeromonas , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carpas/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Infecções por Bactérias Gram-Negativas/veterinária , Salvia officinalis/metabolismo , Superóxido DismutaseRESUMO
Currently, the intervention of plant by-products in the fish diet has gained tremendous attention owing to the economic and high nutritious value. The current study is a pioneer attempt to incorporate the apricot, Prunus armeniaca kernel powder (PAKP) into the Common carp, Cyprinus carpio diets, and assess its efficacy on growth, digestion, intestinal morphology, immunity, antioxidant capacity, and splenic cytokines expression, besides the antibacterial role against Aeromonas veronii infection. Apparently healthy fish (N = 120) with an initial body weight of 24.76 ± 0.03g were allotted in 12 glass aquaria (60 L) and randomly distributed into four groups (triplicates, 10 fish/aquarium). The control group (PAKP0) was fed a basal diet without additives. The second, third, and fourth groups were provided PAKP diets with various concentrations (2.5 (PAKP2.5), 5 (PAKP5), and 10 g kg-1 (PAKP10)) respectively. After 60 days (feeding trial), sub-samples of the fish (12 fish/group) were intraperitoneally injected with 1 × 107 CFU mL-1 of A. veronii. Results revealed that body weight gain, feed conversion ratio, and specific growth rates were significantly augmented in the PAKP10 group in comparison to the other groups. The dietary inclusion of PAKP at all concentrations boosted the digestive capacity and maintained the intestinal morphology (average villus length, villus width, and goblet cells count) with a marked improvement in PAKP10. Moreover, fish fed on PAKP10 followed by PAKP5 then PAKP2.5 diets had noticeably elevated values of immunological biomarkers (IgM, antiprotease, and lysozyme activity) and antioxidant capabilities (the total antioxidant capacity, superoxide dismutase, and reduced glutathione) as well as significant up-regulation of immune and antioxidant-related genes (TGF-ß2, TLR-2, TNF-α, IL-10, SOD, GPx, and GSS). Fourteen days post-infection with A. veronii, the highest relative percentage survival of fish was observed in PAKP10 (83.33%), followed by PAKP5 (66.67%), and PAKP2.5 (50%). Our results indicated that a dietary intervention with PAKP could promise growth, digestion, immunity, and protect C. carpio against A. veronii infection in a dose-dependent manner. This offers a framework for future application of such seeds as a growth promotor, immune-stimulant, and antioxidant, besides an alternative cheap therapeutic antibacterial agent for sustaining the aquaculture industry.
Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Prunus armeniaca , Aeromonas veronii , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Peso Corporal , Carpas/metabolismo , Citocinas/genética , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Extratos Vegetais , Prunus armeniaca/metabolismoRESUMO
Treatment of diabetic foot ulcer (DFU) is of great challenge as it is shown to be infected by multidrug resistant bacteria (MDR bacteria). Sixty four bacterial isolates were isolated from DFU cases; antibiotic susceptibility tests were carried out for all of them. One bacterial isolate (number 11) was shown to resist the action of 8 out of 12 antibiotics used and was identified by both a Vitek-2 system and 16S rRNA fingerprints as belonging to Proteus mirabilis, and was designated Proteus mirabilis LC587231 (P. mirabilis). Clove flower extract (CFE) inhibited distinctively the P. mirabilis bacterium obtained. GC-MS spectroscopy showed that this CFE contained nine bioactive compounds. The effect of CFE on wound healing of Type 1 diabetic albino rats (Rattus norvegicus) was studied. The results indicated that topical application of CFE hydrogel improved wound size, wound index, mRNA expression of the wound healing markers (Coli1, MMP9, Fibronectin, PCNA, and TGFß), growth factor signaling pathways (PPAR-α, PGC1-α, GLP-1, GLPr-1, EGF-ß, EGF-ßr, VEGF-ß, and FGF-ß), inflammatory cytokine expression (IL8, TNFα, NFKß, IL1ß, and MCP1), as well as anti-inflammatory cytokines (IL4 & IL10), pro-apoptotic markers (FAS, FAS-L, BAX, BAX/BCL-2, Caspase-3, P53, P38), as well as an antiapoptotic one (BCL2). Furthermore, it improved the wound oxidative state and reduced the wound microbial load, as the cefepime therapy improved the wound healing parameters. Based on the previous notions, it could be concluded that CFE represents a valid antibiotics alternative for DFU therapy since it improves diabetic wound healing and exerts antibacterial activity either in vitro or in vivo.
Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Extratos Vegetais , Syzygium , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Pé Diabético/tratamento farmacológico , Pé Diabético/microbiologia , Farmacorresistência Bacteriana , Fator de Crescimento Epidérmico/metabolismo , Extratos Vegetais/uso terapêutico , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley , Estreptozocina , Syzygium/química , Syzygium/efeitos dos fármacos , Cicatrização , Proteína X Associada a bcl-2RESUMO
Exciting advances are revealing that breast milk harbors populations of stem and progenitor cells, and much attention is now intensified on delineating their properties and functions. The aim of this study is to isolate a mesenchymal stem cell (MSC)-like population from rabbit breast milk and track their integration into the different organs of the breastfed rabbits after taken by oral route and to explore the functional role of stem cells in the breastfed newborn babies. Ten newborn rabbits 2 weeks old fed on 2 × 106 PKH26-labeled rabbit milk derived-MSCs suspended in 2 mL Dulbecco's modified Eagle's medium (DMEM) and 10 newborn baby rabbits fed with 2 mL DMEM solution or with rabbit fibroblasts as a control group were used in the study. All rabbits were sacrificed after 1 week. We found that PKH26-labeled MSCs were engrafted into the offspring organs as liver, cartilage, bone and duodenum. Histologically, there was proliferation of cells in some organs. Moreover, there was overexpression of both PCNA and cyclin D1 genes in all organs from milk derived MSCs fed rabbits compared to the control group. Our results confirmed the presence of MSC-like population in the breast milk. We first showed that milk derived-MSCs were engrafted into the offspring organs when were taken orally. Milk derived-MSCs may elucidate the functional benefits to the newborn babies by increasing cell proliferation and growth. © 2016 IUBMB Life, 68(12):935-942, 2016.
Assuntos
Células-Tronco Mesenquimais/fisiologia , Leite/citologia , Animais , Antígenos CD/metabolismo , Rastreamento de Células , Células Cultivadas , Ciclina D1/metabolismo , Feminino , Transplante de Células-Tronco Mesenquimais , Especificidade de Órgãos , Antígeno Nuclear de Célula em Proliferação/metabolismo , CoelhosRESUMO
BACKGROUND: 7,12-Dimethylbenzanthracene (DMBA) is a member of the polycyclic aromatic hydrocarbon family. It is a member of the polycyclic aromatic hydrocarbon family. It is a mutagenic, carcinogenic, and immunosuppressor agent. Cannabidiol (CBD) is a phytocannabinoid. It has anticonvulsant, anti-inflammatory, anti-anxiety, antioxidant, and anti-cancer properties. The purpose of this study was to investigate the possible protective and therapeutic benefits of CBD oil in DMBA-induced leukemia in rats. METHOD: Experimental animals were divided into six groups of five rats each. Group 1 (normal control) included healthy rats. Group 2 included normal rats that received olive oil. Group 3 included normal rats that received CBD. Group 4 included the DMBA-induced leukemic group. Group 5 (prophylactic group) included rats that received CBD as a prophylaxis before IV injection with DMBA. Group 6 (treated group) included DMBA-induced leukemic rats that received CBD as treatment. Liver functions (total, direct and indirect bilirubin, alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate aminotransferase (AST), albumin, globulin, and albumin globulin ratio) were measured. Superoxide dismutase (SOD) and catalase (CAT) were also measured. Total RNA extraction followed by-real time qRT-PCR gene expression of LC3-II, Beclin, mTOR, and P62 was performed. Histopathological examination of liver and spleen tissues was performed. RESULTS: Administration of CBD in groups 5 and 6 resulted in a significant improvement of the levels of liver functions compared to the leukemic untreated rats. Also, the levels of catalase and SOD significantly increased after treatment with CBD compared to the leukemic group. After treatment with CBD in groups 5 and 6, there were downregulations in the expression of all studied genes compared to leukemic untreated rats. Treatment with CBD was more statistically effective than prophylactic use. CONCLUSION: Administration of CBD resulted in a significant improvement in the biochemical, antioxidant status, morphological, and molecular measures in DMBA-induced leukemia in adult male rats. The therapeutic use was more effective than the prophylactic one.
Assuntos
Canabidiol , Globulinas , Leucemia Experimental , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , 9,10-Dimetil-1,2-benzantraceno/metabolismo , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Leucemia Experimental/tratamento farmacológico , Leucemia Experimental/metabolismo , Leucemia Experimental/patologia , Fígado , Globulinas/metabolismo , Globulinas/farmacologia , Superóxido Dismutase/metabolismo , Albuminas/metabolismoRESUMO
Background: Obesity is one of the most prevalent and perilous health affairs. Male obesity-associated secondary hypogonadism (MOSH) is one of many of its complexities, which is mounting in parallel with the aggravation of obesity. Magnetic nanoparticles seem to be an advanced favorable trend in multiple biomedical fields. Aim: In this study, we explore the therapeutic effects of superparamagnetic iron oxide nanoparticles (SPIONs) coated with carboxymethyl cellulose (CMC) on an obese male rat model with MOSH syndrome, comparing their impacts with a well-known anti-obesity medication (Orlistat). Methods: 42 male albino rats split into 7 equal groups: 1-negative control: nonobese, untreated; 35 rats fed the high fat-high fructose (HFHF) diet for a period of 12 weeks. Obese rats splitted into 6 equal groups; 2-positive control: obese untreated; 3-obese given Orlistat (30 mg/kg); 4-obese given CMC-SPIONs (25 mgFe/kg); 5-obese given CMC-SPIONs (50 mgFe/kg); 6-obese given CMC-SPIONs(25 mgFe/kg) + Orlistat (30 mg/kg), 7-obese given CMC-SPIONs (50 mgFe/kg) + Orlistat (30 mg/kg); all treatments given orally for 4 weeks. During sacrifice, blood serum and sectioned hypothalamic, pituitary, testicular, and adipose tissues were collected for biochemical and biomolecular assessments. Results: The HFHF diet for 12 weeks resulted in a significant upsurge in body weight, body mass index, serum fasting glucose, insulin resistance, TAG, total cholesterol, and LDL-c; HDL-c was dropped. Serum FSH, LH, and testosterone values declined. A significant disorder in expression levels of genes regulating the hypothalamic-pituitary-testicular-axis pathway. Hypothalamic GnRH, Kisspeptin-1, Kisspeptin-r1, and Adipo-R1 values declined. GnIH and Leptin-R1 values raised up. Pituitary GnRH-R values declined. Testicular tissue STAR, HSD17B3, and CYP19A1 values declined. Adipose tissue adiponectin declined, while leptin raised up. CMC-SPIONs 25-50 mg could modulate the deranged biochemical parameters and correct the deranged expression levels of all previous genes. Co-treatments revealed highly synergistic effects on all parameters. Overall, CMC-SPIONs have significant efficiency whether alone or with Orlisat in limiting obesity and consequence subfertility. Conclusion: CMC-SPIONs act as an incoming promising contender for obesity and MOSH disorders management, and need more studies on their mechanisms.
Assuntos
Hipogonadismo , Obesidade , Doenças dos Roedores , Ratos , Masculino , Animais , Leptina/metabolismo , Leptina/uso terapêutico , Orlistate/metabolismo , Orlistate/farmacologia , Orlistate/uso terapêutico , Testículo/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/veterinária , Hipogonadismo/metabolismo , Hipogonadismo/veterinária , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/uso terapêutico , Nanopartículas Magnéticas de Óxido de FerroRESUMO
An experiment was conducted to assess the response of chicks to in-ovo injection of Bacillus subtilis (probiotic), raffinose (prebiotic), and their combinations. The study used 1,500 embryonated eggs allotted to 10 groups/ 6 replicates (150 eggs/group). The experimental treatments were: 1) un-injected control (NC); 2) sham (sterile distilled water) (PC); 3) probiotic 4 × 105CFU/egg (LBS); 4) probiotic 4 × 106CFU/egg (HBS); 5) prebiotic 2 mg/egg (LR); (6 prebiotic 3 mg/egg (HR); 7) probiotic 4 × 105CFU + prebiotic 2 mg/egg (LBS+LR); 8) probiotic 4 × 105CFU + prebiotic 3 mg/egg (LBS+HR); 9) probiotic 4 × 106CFU + prebiotic 2 mg/egg (HBS+LR); and 10) probiotic 4 × 106CFU + prebiotic 3 mg/egg (HBS+HR). Results showed that in-ovo inclusion of Bacillus subtilis, prebiotic, and their combinations improved hatchability, yolk-free chick weight, and chick weight compared to the control group. Moreover, the in-ovo treatment reduced residual yolk weight on the day of hatch compared to the control group. Different levels of in-ovo B. subtilis alone or combined with raffinose significantly (P ≤ 0.001) reduced total bacterial count and total yeast and mold count compared to the negative control group. Total coliform and E. coli decreased significantly (P ≤ 0.001) in groups treated with probiotics, prebiotics, and synbiotics with different doses during incubation compared to those in the control. Clostridium spp. was not detected in the groups injected with B. subtilis alone or combined with raffinose. In-ovo probiotics and synbiotics (LBS+LR & LBS+HR) significantly (P ≤ 0.001) increased ileal villus length compared to other groups. In-ovo treatment increased mRNA expression of JAM-2 compared to the control group. The fold change significantly increased in group LBS+HR for genes MUC-2, OCLN, VEGF, SGLT-1, and EAAT-3 compared to the negative control. In conclusion, in-ovo injection of a low dose of B. subtilis plus a high or low dose of raffinose can positively affect hatching traits, cecal microbial populations, intestinal histomorphometry, nutrient transport- and intestinal function-related genes, and chick quality of newly hatched broiler chicks.
Assuntos
Bacillus subtilis , Galinhas , Prebióticos , Probióticos , Rafinose , Animais , Bacillus subtilis/química , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Rafinose/farmacologia , Rafinose/administração & dosagem , Probióticos/administração & dosagem , Probióticos/farmacologia , Prebióticos/administração & dosagem , Óvulo/fisiologia , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Intestinos/microbiologia , Embrião de Galinha , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/efeitos dos fármacosRESUMO
The drug efflux pump is a crucial mechanism implicated in resistance to multiple antimicrobials. Thymoquinone (TQ) has evidently demonstrated multiple activities, antibacterial being the most effective. Knowledge about TQ activity against multidrug-resistant Staphylococcus aureus is very scarce. Therefore, the present study was conducted to investigate TQ resistance modulation in ciprofloxacin (CIP) and doxycycline (DO) multidrug-resistant S. aureus. Forty-seven samples were collected from different sources, and S. aureus was isolated and identified. Then, S. aureus resistance profiles to antimicrobials, N. sativa essential oil, and TQ; the correlation between TQ-MIC readings and disc diffusion; cartwheel and ethidium bromide (EtBr) accumulation assays; and norA gene expression were all described within silico molecular docking for TQ interactions with norA efflux pump protein. TQ-MICs ranged from 5-320 µg/ml. TQ down-regulated norA gene expression, resulting in a drop in efflux pump activity of 77.5-90.6% in the examined strains, comparable to that observed with verapamil. Exposure of S. aureus strains to CIP and DO raises the initial basal efflux pumping expression to 34.2 and 22.9 times, respectively. This induced efflux pumping overexpression was substantially reduced by 97.7% when TQ was combined with CIP or DO. There was a significant reduction of MICs of CIP and DO MICs by 2-15 and 2-4 folds, respectively, after treatment with 0.5XMIC-TQ in resistance modulation assays. These results refer to TQ ligand inhibitory interactions with NorA protein in molecular docking. Interpretations of inhibition zone diameters (IZDs) of disc diffusion and TQ-MICs exhibit independence of MICs from IZDs, as indicated by invalid linear regression analysis. TQ significantly reduced efflux pumping S. aureus induced by CIP and DO, but further investigations are needed to improve TQ-pharmacokinetics to restore CIP and DO activity and suppress fluoroquinolone and doxycycline-resistant S. aureus selection in clinical and animal settings.
Assuntos
Antibacterianos , Proteínas de Bactérias , Benzoquinonas , Ciprofloxacina , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Staphylococcus aureus , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Benzoquinonas/farmacologia , Benzoquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Doxiciclina/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacosRESUMO
The red pepper (Capsicum annuum) has gained great attention recently because of its biological and pharmacological characteristics. The present approach aimed to evaluate the effects of C. annuum alcoholic extract (CAE) supplementation on Nile tilapia (Oreochromis niloticus) growth performance, physiological status, some metabolic, immune, and regulatory genes expression, and resistance against Streptococcus agalactiae infection. Fish (22.26 ± 0.19 g) were assigned to four treatments (five replicates, each with 10 fish replicate-1) and fed tested diets for 60 days. The experimental diets were supplemented with CAE at 0, 0.4, 0.8, and 1.6 g kg-1, expressed as CAE0, CAE0.4, CAE0.8, and CAE1.6, respectively. The findings exhibited that CAE dietary supplementation improved growth performance, feed utilization, elevated growth hormone level, and digestive enzyme activities (amylase and protease), and lowered leptin hormone in a level-dependent manner. Boosting the mRNA expression of the transporter proteins (solute carrier family 15 member 2 and solute carrier family 26 member 6) and insulin-like growth factor-1 genes with a decrease in the myostatin gene expression was noticed in the CAE-fed groups. The innate immune (serum bactericidal activity %, complement 3, and phagocytic activity %) and antioxidant (glutathione peroxidase and total antioxidant capacity) parameters were significantly (p < 0.05) improved, and the serum malondialdehyde level was significantly decreased by CAE dietary inclusion. A marked upregulation in the mRNA expression of interleukins (il-1ß, il-6, il-8, and il-10), transforming growth factor-ß, glutathione peroxidase, and glutathione synthetase genes were observed in CAE-fed groups. Dietary CAE decreased the cumulative mortalities after the challenge with S. agalactiae by 20, 13.33, and 10% in CAE0.4, CAE0.8, and CAE1.6, respectively, compared to the control (40%). Overall, dietary supplementation with CAE could improve growth performance and physiological status, and modulate the expression of several regulatory genes in Nile tilapia. The recommended level of CAE is 1.6 g kg-1 to augment growth and health status.
Assuntos
Capsicum , Ciclídeos , Doenças dos Peixes , Animais , Capsicum/genética , Capsicum/metabolismo , Antioxidantes/metabolismo , Resistência à Doença , Ciclídeos/genética , Imunidade Inata , Suplementos Nutricionais , Dieta/veterinária , Glutationa Peroxidase/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Expressão Gênica , RNA Mensageiro/metabolismo , Ração Animal/análise , Doenças dos Peixes/prevenção & controleRESUMO
Fenpropathrin (FN), a pyrethroid has been linked to potential pulmonary toxic effects to humans via incident direct or indirect ingestion. Thus, we aimed to the investigate the underlying mechanisms of lung toxicity upon exposure to FN in the rat model, besides studying whether curcumin (CCM) and curcumin-loaded chitosan nanoformulation (CCM-Chs) can mitigate FN-induced lung damage. Six distinct groups, namely, control, CCM, CCM-Chs, FN, and CCM + FN, CCM-Chs + FN were assigned separately. The inflammatory, apoptotic, and oxidative stress states, histological, immunohistochemical, and immunofluorescence examination of different markers within the pulmonary tissue were applied. The results revealed that the FN-induced tissue damage might be caused by the oxidative stress induction and depressed antioxidant glutathione system in the lungs of rats. Furthermore, FN upregulated the expression of genes related to inflammation, and pyroptosis, and elevated the immunoreactivity of Caspase-3, tumor necrosis factor-α, vimentin, and 4-Hydroxynonenal in pulmonary tissues of FN-exposed rats compared to the control. CCM and CCM-Chs mitigated the FN-induced disturbances, while remarkably, CCM-Chs showed better potency than CCM in mitigating the FN-induced toxicity. In conclusion, this study shows the prominent preventive ability of CCM-Chs more than CCM in combatting the pulmonary toxicity induced by FN. This may be beneficial in developing therapeutic and preventive strategies against FN-induced pulmonary toxicity.
Assuntos
Curcumina , Piretrinas , Humanos , Ratos , Animais , Curcumina/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Estresse Oxidativo , Piretrinas/toxicidade , Apoptose , Corantes , PulmãoRESUMO
Little is known about the effects of acrylamide (AMD) on the stomach. So, this study evaluated the effect of oral AMD exposure (20â¯mg/kg b.wt) on oxidative status, apoptotic, and inflammatory reactions in rat's stomach for 60 days. To explore novel targets of AMD toxicity, a more detailed molecular and immune-expression study was performed. Besides, the possible protective effect of green synthesized zinc oxide nanoparticles (G-ZNP) (10â¯mg/kg b.wt) was explored. The results revealed that AMD significantly provoked oxidative and lipid peroxidative damage of the stomach in terms of increased ROS and MDA but reduced SOD, CAT, GSH, and GSH/GSSG. Additionally, the stomachs of AMD-exposed rats showed a significant increment of PGE2 but reduced NO. Histopathologically, AMD induced a significant increase in PAS stain and the immunoexpression of iNOS and NF-κB in the glandular stomach. A significant upregulation of CART, VACHT, EGFR, caspase-3, NOS-1, and miR-27a-5p was evident in the stomach of the AMD group. Yet, G-ZNP oral dosing significantly rescued the AMD-induced oxidative damage, apoptotic reaction, inflammatory effect, and altered miR-27a-5p and gene expressions in the stomach. Conclusively, these findings demonstrated the efficacy of G-ZNP in protecting against the harmful impacts of acrylamide on stomach tissues.