Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Chem Ecol ; 50(5-6): 299-318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38305931

RESUMO

Intercropping is drawing increasing attention as a strategy to increase crop yields and manage pest pressure, however the mechanisms of associational resistance in diversified cropping systems remain controversial. We conducted a controlled experiment to assess the impact of co-planting with silverleaf Desmodium (Desmodium uncinatum) on maize secondary metabolism and resistance to herbivory by the spotted stemborer (Chilo partellus). Maize plants were grown either in the same pot with a Desmodium plant or adjacent to it in a separate pot. Our findings indicate that co-planting with Desmodium influences maize secondary metabolism and herbivore resistance through both above and below-ground mechanisms. Maize growing in the same pot with a Desmodium neighbor was less attractive for oviposition by spotted stemborer adults. However, maize exposed only to above-ground Desmodium cues generally showed increased susceptibility to spotted stemborer herbivory (through both increased oviposition and larval consumption). VOC emissions and tissue secondary metabolite titers were also altered in maize plants exposed to Desmodium cues, with stronger effects being observed when maize and Desmodium shared the same pot. Specifically, benzoxazinoids were strongly suppressed in maize roots by direct contact with a Desmodium neighbor while headspace emissions of short-chain aldehydes and alkylbenzenes were increased. These results imply that direct root contact or soil-borne cues play an important role in mediating associational effects on plant resistance in this system.


Assuntos
Herbivoria , Oviposição , Zea mays , Zea mays/metabolismo , Zea mays/fisiologia , Animais , Oviposição/efeitos dos fármacos , Metabolismo Secundário , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Benzoxazinas/metabolismo , Benzoxazinas/farmacologia , Larva/fisiologia , Larva/crescimento & desenvolvimento , Fabaceae/metabolismo , Fabaceae/fisiologia , Feminino , Raízes de Plantas/metabolismo , Mariposas/fisiologia , Mariposas/crescimento & desenvolvimento
2.
Proc Biol Sci ; 289(1988): 20221695, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475436

RESUMO

Insect pests are a major challenge to smallholder crop production in sub-Saharan Africa (SSA), where access to synthetic pesticides, which are linked to environmental and health risks, is often limited. Biological control interventions could offer a sustainable solution, yet an understanding of their effectiveness is lacking. We used a meta-analysis approach to investigate the effectiveness of commonly used biocontrol interventions and botanical pesticides on pest abundance (PA), crop damage (CD), crop yield (Y) and natural enemy abundance (NEA) when compared with controls with no biocontrol and with synthetic pesticides. We also evaluated whether the magnitude of biocontrol effectiveness was affected by type of biocontrol intervention, crop type, pest taxon, farm type and landscape configuration. Overall, from 99 studies on 31 crops, we found that compared to no biocontrol, biocontrol interventions reduced PA by 63%, CD by over 50% and increased Y by over 60%. Compared to synthetic pesticides, biocontrol resulted in comparable PA and Y, while NEA was 43% greater. Our results also highlighted that the potential for biocontrol to be modulated by landscape configuration is a critical knowledge gap in SSA. We show that biocontrol represents an effective tool for smallholder farmers, which can maintain yields without associated negative pesticide effects. Furthermore, the evidence presented here advocates strongly for including biocontrol practices in national and regional agricultural policies.


Assuntos
Produtos Agrícolas , Controle Biológico de Vetores , África Subsaariana
3.
Chimia (Aarau) ; 76(11): 906-913, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069785

RESUMO

Push-pull technology (PPT) employs mixed cropping for sustainable intensification: an intercrop repels or suppresses pests of the focal crop (push), while a trap crop attracts pests out of the field (pull), where they may be targeted for control. Underlying chemical-ecological mechanisms have been demonstrated in controlled settings, primarily for some of the best-established cereal PPT systems developed in east Africa. Yet, many questions remain regarding mechanisms, and strategies to adapt PPT for different crops and locations. We conducted a systematic review of scientific literature on PPT and related practices for biological control of pests of food and fodder. Of 3335 results, we identified 45 reporting on chemistry of trap- or intercropping systems for pest control, of which 30 focused on cereals or African pests. Seven of these reported primary chemical data: measurements from glasshouse and laboratory studies (5), or of field-collected samples (2). From these 30, we provide a database of compounds, discussing degrees of evidence for their mediation of push-pull. We depict hypothesized spatial distributions of selected compounds in PPT fields from physical properties and emission/exudation rates, and design of the east African cereal PPT system, and discuss influences on activity in field settings likely to affect success.

4.
Entomol Exp Appl ; 169(10): 966-974, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35875261

RESUMO

Production of maize, Zea mays L. (Poaceae), in sub-Saharan Africa is threatened by a new invasive pest, fall armyworm (FAW), Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). To mitigate this threat, push-pull companion cropping, a system originally developed for management of lepidopteran stemborers, may be used to control FAW. The original system involved trap crops that functioned as a 'pull' component to attract moths away from the main crop. How grass species can be used as trap crops in a push-pull system to control FAW is a question that remains to be answered, because maize is already a highly preferred host plant. Therefore, we tested oviposition preference of FAW female moths in no-choice and two-choice experiments and larval performance on six selected grasses (Poaceae) to assess their roles as trap crop 'pull' plants in the system. In no-choice tests, numbers of eggs deposited on Brachiaria brizantha (Hochst. ex A. Rich.) R. Webster cv. 'Piata', cv. 'Mulato II', and cv. 'Xaraes', and Napier grass (Pennisetum purpureum K. Schumach) cv. 'South Africa' were not statistically different from those deposited on maize. In two-choice tests between grasses and maize, there were no significant differences in number of eggs laid when the plants were of the same size. However, in two-choice tests with maize plants half of the size of the grasses, significantly more eggs were laid on B. brizantha cv. Xaraes and P. purpureum cv. South Africa than on maize, suggesting that crop phenology could make a difference. Numbers of larvae arrested on grass leaf cuts were considerably lower than those on maize leaf cuts after 48 h. In two-choice tests with maize, molasses grass (Melinis minutiflora P. Beauv.) was the only grass that was significantly preferred to maize for larval settlement after 24 h. After 48 h in the two-choice test, it was the only grass that retained larvae, although the larval count was significantly lower than on maize. Our data show that none of the grasses tested were strongly preferred to maize, but the results indicate plants attractive to FAW adults and larvae that could be utilized in a multiple trap crop approach to target various stages of the pest. Furthermore, results indicate the importance of planting these companion plants earlier than maize.

5.
J Chem Ecol ; 45(11-12): 982-992, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31784860

RESUMO

Plants have evolved intricate defence strategies against herbivore attack which can include activation of defence in response to stress-related volatile organic compounds (VOCs) emitted by neighbouring plants. VOCs released by intact molasses grass (Melinis minutiflora), have been shown to repel stemborer, Chilo partellus (Swinhoe), from maize and enhance parasitism by Cotesia sesamiae (Cameron). In this study, we tested whether the molasses grass VOCs have a role in plant-plant communication by exposing different maize cultivars to molasses grass for a 3-week induction period and then observing insect responses to the exposed plants. In bioassays, C. partellus preferred non-exposed maize landrace plants for egg deposition to those exposed to molasses grass. Conversely, C. sesamiae parasitoid wasps preferred volatiles from molasses grass exposed maize landraces compared to volatiles from unexposed control plants. Interestingly, the molasses grass induced defence responses were not observed on hybrid maize varieties tested, suggesting that the effect was not simply due to absorption and re-emission of VOCs. Chemical and electrophysiological analyses revealed strong induction of bioactive compounds such as (R)-linalool, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene from maize landraces exposed to molasses grass volatiles. Our results suggest that constitutively emitted molasses grass VOCs can induce direct and indirect defence responses in neighbouring maize landraces. Plants activating defences by VOC exposure alone could realize enhanced levels of resistance and fitness compared to those that launch defence responses upon herbivore attack. Opportunities for exploiting plant-plant signalling to develop ecologically sustainable crop protection strategies against devastating insect pests such as stemborer C. partellus are discussed.


Assuntos
Compostos Orgânicos Voláteis/química , Zea mays/metabolismo , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/metabolismo , Animais , Produtos Agrícolas , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Herbivoria , Interações Hospedeiro-Parasita , Melaço , Mariposas/parasitologia , Oviposição/efeitos dos fármacos , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia , Zea mays/parasitologia
6.
Mol Cell Probes ; 35: 44-56, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28647581

RESUMO

Napier grass Stunt Disease (NSD) is a severe disease of Napier grass (Pennisetum purpureum) in Eastern Africa, caused by the leafhopper-transmitted bacterium Candidatus Phytoplasma oryzae. The pathogen severely impairs the growth of Napier grass, the major fodder for dairy cattle in Eastern Africa. NSD is associated with biomass losses of up to 70% of infected plants. Diagnosis of NSD is done by nested PCR targeting the phytoplasma DNA, which is difficult to perform in developing countries with little infrastructure. We report the development of an easy to use, rapid, sensitive and specific molecular assay for field diagnosis of NSD. The procedure is based on recombinase polymerase amplification and targets the imp gene encoding a pathogen-specific immunodominant membrane protein. Therefore we followed a two-step process. First we developed an isothermal DNA amplification method for real time fluorescence application and then transferred this assay to a lateral flow format. The limit of detection for both procedures was estimated to be 10 organisms. We simplified the template preparation procedure by using freshly squeezed phloem sap from Napier grass. Additionally, we developed a laboratory serological assay with the potential to be converted to a lateral flow assay. Two murine monoclonal antibodies with high affinity and specificity to the immunodominant membrane protein IMP of Candidatus Phytoplasma oryzae were generated. Both antibodies specifically reacted with the denatured or native 17 kDa IMP protein. In dot blot experiments of extracts from infected plant, phytoplasmas were detected in as little as 12,5 µg of fresh plant material.


Assuntos
Phytoplasma/genética , Técnicas de Amplificação de Ácido Nucleico , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
7.
Crop Prot ; 98: 94-101, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28775391

RESUMO

The parasitic weed Striga hermonthica Benth. (Orobanchaceae), commonly known as striga, is an increasingly important constraint to cereal production in sub-Saharan Africa (SSA), often resulting in total yield losses in maize (Zea mays L.) and substantial losses in sorghum (Sorghum bicolor (L.) Moench). This is further aggravated by soil degradation and drought conditions that are gradually becoming widespread in SSA. Forage legumes in the genus Desmodium (Fabaceae), mainly D. uncinatum and D. intortum, effectively control striga and improve crop productivity in SSA. However, negative effects of climate change such as drought stress is affecting the functioning of these systems. There is thus a need to identify and characterize new plants possessing the required ecological chemistry to protect crops against the biotic stress of striga under such environmental conditions. 17 accessions comprising 10 species of Desmodium were screened for their drought stress tolerance and ability to suppress striga. Desmodium incanum and D. ramosissimum were selected as the most promising species as they retained their leaves and maintained leaf function for longer periods during their exposure to drought stress conditions. They also had desirable phenotypes with more above ground biomass. The two species suppressed striga infestation, both under controlled and field conditions, and resulted in significant grain yield increases, demonstrating the incremental capability of Desmodium species in striga suppression. These results demonstrate beneficial effects of Desmodium species in enhancing cereal productivity in dry areas.

8.
New Phytol ; 212(4): 856-870, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27874990

RESUMO

856 I. 856 II. 857 III. 858 IV. 859 V. 860 VI. 862 VII. 863 VIII. 864 IX. 866 866 References 866 SUMMARY: The mediation of volatile secondary metabolites in signalling between plants and other organisms has long been seen as presenting opportunities for sustainable crop protection. Initially, exploitation of interactions between plants and other organisms, particularly insect pests, foundered because of difficulties in delivering, sustainably, the signal systems for crop protection. We now have mounting and, in some cases, clear practical evidence for successful delivery by companion cropping or next-generation genetic modification (GM). At the same time, the type of plant signalling being exploited has expanded to signalling from plants to organisms antagonistic to pests, and to plant stress-induced, or primed, plant-to-plant signalling for defence and growth stimulation.


Assuntos
Agricultura , Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Solo
9.
J Chem Ecol ; 42(7): 689-97, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27392788

RESUMO

Lepidopterous stemborers, and parasitic striga weeds belonging to the family Orobanchaceae, attack cereal crops in sub-Saharan Africa causing severe yield losses. The smallholder farmers are resource constrained and unable to afford expensive chemicals for crop protection. The push-pull technology, a chemical ecology- based cropping system, is developed for integrated pest and weed management in cereal-livestock farming systems. Appropriate plants were selected that naturally emit signaling chemicals (semiochemicals). Plants highly attractive for stemborer egg laying were selected and employed as trap crops (pull), to draw pests away from the main crop. Plants that repelled stemborer females were selected as intercrops (push). The stemborers are attracted to the trap plant, and are repelled from the main cereal crop using a repellent intercrop (push). Root exudates of leguminous repellent intercrops also effectively control the parasitic striga weed through an allelopathic mechanism. Their root exudates contain flavonoid compounds some of which stimulate germination of Striga hermonthica seeds, such as Uncinanone B, and others that dramatically inhibit their attachment to host roots, such as Uncinanone C and a number of di-C-glycosylflavones (di-CGFs), resulting in suicidal germination. The intercrop also improves soil fertility through nitrogen fixation, natural mulching, improved biomass, and control of erosion. Both companion plants provide high value animal fodder, facilitating milk production and diversifying farmers' income sources. The technology is appropriate to smallholder mixed cropping systems in Africa. Adopted by about 125,000 farmers to date in eastern Africa, it effectively addresses major production constraints, significantly increases maize yields, and is economical as it is based on locally available plants, not expensive external inputs.


Assuntos
Fenômenos Ecológicos e Ambientais , Controle de Pragas/métodos , Agricultura , Animais , Mudança Climática , Feromônios/farmacologia
10.
Plant Dis ; 100(1): 108-115, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30688571

RESUMO

Plant-pathogenic phytoplasmas found in wild grasses in East Africa could pose a serious threat to the cultivation of Napier grass, Pennisetum purpureum, the most important livestock fodder in the region. To asses this threat, leaves from plants of 33 grass species were sampled from Mbita, Bungoma, and Busia districts in western Kenya; Tarime district in northern Tanzania; and Busia and Bugiri districts in the eastern Uganda to determine which species host phytoplasmas, the identity of the phytoplasmas, and their relationship with disease symptoms. Phytoplasmas were detected using universal primers based on conserved phytoplasma-specific 16S rDNA sequences from 11 grass species collected. Sequence and phylogenetic analysis revealed the presence of Napier grass stunt-related phytoplasmas in 11 grass species, 'Candidatus Phytoplasma cynodontis' in three, and goosegrass white leaf phytoplasma in 2 wild grass species. This study showed that the geographical distribution, diversity of phytoplasmas, and their grass host species in East Africa is greater than antecedently thought and that typical disease symptoms, including white leaf or stunting alone, are not reliable indicators of the presence of phytoplasma. It also shows the need to identify insect vectors responsible for phytoplasma transmission from native grasses to Napier grass or other cereals present in the region.

11.
Org Biomol Chem ; 13(48): 11663-73, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26478440

RESUMO

The allelopathic root exudate of the drought-tolerant subsistence cereal intercrop D. incanum, protecting against the parasitic weed Striga hermonthica, comprises a number of di-C-glycosylflavones specifically containing C-glucosyl, C-galactosyl and C-arabinosyl moieties. Here we demonstrate that the biosynthesis of all compounds containing a C-glucose involves C-glucosylation of 2-hydroxynaringenin with subsequent C-galactosylation, C-glucosylation or C-arabinosylation. In addition, the crude soluble enzyme extract converts two fluorinated 2-hydroxyflavanone analogues to corresponding mono- and di-C-glycosylflavones demonstrating that some differences in C-ring substitution can be tolerated by the plant enzymes. Elucidating the biosynthesis of these C-glycosylflavones (CGFs) has the potential to open up opportunities for transferring the enzymic and genetic basis for the S. hermonthica inhibiting allelopathic trait to food crop plants.


Assuntos
Alelopatia , Fabaceae/química , Flavonas/biossíntese , Flavonas/química , Raízes de Plantas/química , Glicosilação , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
12.
J Chem Ecol ; 41(4): 323-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25943860

RESUMO

Maize, a genetically diverse crop, is the domesticated descendent of its wild ancestor, teosinte. Recently, we have shown that certain maize landraces possess a valuable indirect defense trait not present in commercial hybrids. Plants of these landraces release herbivore-induced plant volatiles (HIPVs) that attract both egg [Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae)] and larval [Cotesia sesamiae Cameron (Hymenoptera: Braconidae)] parasitoids in response to stemborer egg deposition. In this study, we tested whether this trait also exists in the germplasm of wild Zea species. Headspace samples were collected from plants exposed to egg deposition by Chilo partellus Swinhoe (Lepidoptera: Crambidae) moths and unexposed control plants. Four-arm olfactometer bioassays with parasitic wasps, T. bournieri and C. sesamiae, indicated that both egg and larval parasitoids preferred HIPVs from plants with eggs in four of the five teosinte species sampled. Headspace samples from oviposited plants released higher amounts of EAG-active compounds such as (E)-4,8-dimethyl-1,3,7-nonatriene. In oviposition choice bioassays, plants without eggs were significantly preferred for subsequent oviposition by moths compared to plants with prior oviposition. These results suggest that this induced indirect defence trait is not limited to landraces but occurs in wild Zea species and appears to be an ancestral trait. Hence, these species possess a valuable trait that could be introgressed into domesticated maize lines to provide indirect defense mechanisms against stemborers.


Assuntos
Mariposas/fisiologia , Oviposição , Feromônios/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia , Zea mays/química , Animais , Feminino , Interações Hospedeiro-Parasita , Mariposas/parasitologia , Olfatometria , Percepção Olfatória , Distribuição Aleatória
13.
Ecol Entomol ; 40(Suppl 1): 70-81, 2015 09.
Artigo em Inglês | MEDLINE | ID: mdl-27478298

RESUMO

1. Africa faces serious challenges in feeding its rapidly growing human population owing to the poor productivity of maize and sorghum, the most important staple crops for millions of smallholder farmers in the continent, with yields being among the lowest in the world. 2. A complex of lepidopterous stemborers attack cereals in Africa. However, their effective control is difficult, largely as a result of the cryptic and nocturnal habits of moths, and protection provided by host stem for immature pest stages. Moreover, current control measures are uneconomical and impractical for resource-poor farmers. 3. An ecological approach, based on companion planting, known as 'push-pull', provides effective management of these pests, and involves combined use of inter- and trap cropping systems where stemborers are attracted and trapped on trap plants with added economic value ('pull'), and are driven away from the cereal crop by antagonistic intercrops ('push'). 4. Novel defence strategies inducible by stemborer oviposition have recently been discovered, leading to the attraction of egg and larval parasitoids, in locally adapted maize lines but not in elite hybrids. We also established that landscape complexity did not improve the ecosystem service of biological control, but rather provided a disservice by acting as a 'source' of stemborer pests colonising the crop. 5. Here we review and provide new data on the direct and indirect effects of the push-pull approach on stemborers and their natural enemies, including the mechanisms involved, and highlight opportunities for exploiting intrinsic plant defences and natural ecosystem services in pest management in smallholder farming systems in Africa.

14.
Field Crops Res ; 170: 83-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26089591

RESUMO

The parasitic weeds Striga asiatica and Striga hermonthica cause high yield losses in rain-fed upland rice in Africa. Two resistance classes (pre- and post-attachment) and several resistant genotypes have been identified among NERICA (New Rice for Africa) cultivars under laboratory conditions (in vitro) previously. However, little is known about expression of this resistance under field conditions. Here we investigated (1) whether resistance exhibited under controlled conditions would express under representative Striga-infested field conditions, and (2) whether NERICA cultivars would achieve relatively good grain yields under Striga-infested conditions. Twenty-five rice cultivars, including all 18 upland NERICA cultivars, were screened in S. asiatica-infested (in Tanzania) and S. hermonthica-infested (in Kenya) fields during two seasons. Additionally, a selection of cultivars was tested in vitro, in mini-rhizotron systems. For the first time, resistance observed under controlled conditions was confirmed in the field for NERICA-2, -5, -10 and -17 (against S. asiatica) and NERICA-1 to -5, -10, -12, -13 and -17 (against S. hermonthica). Despite high Striga-infestation levels, yields of around 1.8 t ha-1 were obtained with NERICA-1, -9 and -10 (in the S. asiatica-infested field) and around 1.4 t ha-1 with NERICA-3, -4, -8, -12 and -13 (in the S. hermonthica-infested field). In addition, potential levels of tolerance were identified in vitro, in NERICA-1, -17 and -9 (S. asiatica) and in NERICA-1, -17 and -10 (S. hermonthica). These findings are highly relevant to rice agronomists and breeders and molecular geneticists working on Striga resistance. In addition, cultivars combining broad-spectrum resistance with good grain yields in Striga-infested fields can be recommended to rice farmers in Striga-prone areas.

15.
Front Microbiol ; 15: 1395811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966391

RESUMO

Background: Desmodium species used as intercrops in push-pull cropping systems are known to repel insect-pests, suppress Striga species weeds, and shift soil microbiome. However, the mechanisms through which Desmodium species impact the soil microbiome, either through its root exudates, changes in soil nutrition, or shading microbes from its nodules into the rhizosphere, are less understood. Here, we investigated the diversity of root-nodule microbial communities of three Desmodium species- Desmodium uncinatum (SLD), Desmodium intortum (GLD), and Desmodium incanum (AID) which are currently used in smallholder maize push-pull technology (PPT). Methods: Desmodium species root-nodule samples were collected from selected smallholder farms in western Kenya, and genomic DNA was extracted from the root-nodules. The amplicons underwent paired-end Illumina sequencing to assess bacterial and fungal populations. Results: We found no significant differences in composition and relative abundance of bacterial and fungal species within the root-nodules of the three Desmodium species. While a more pronounced shift was observed for fungal community compositions compared to bacteria, no significant differences were observed in the general diversity (evenness and richness) of fungal and bacterial populations among the three Desmodium species. Similarly, beta diversity was not significantly different among the three Desmodium species. The root-nodule microbiome of the three Desmodium species was dominated by Bradyrhizobium and Fusarium species. Nevertheless, there were significant differences in the proportion of marker gene sequences responsible for energy and amino acid biosynthesis among the three Desmodium species, with higher sequence proportions observed in SLD. Conclusion: There is no significant difference in the microbial community of the three Desmodium species used in PPT. However, root-nodule microbiome of SLD had significantly higher marker gene sequences responsible for energy and amino acid biosynthesis. Therefore, it is likely that the root-nodules of the three Desmodium species host similar microbiomes and influence soil health, consequently impacting plant growth and agroecosystem functioning.

16.
J Chem Ecol ; 38(3): 231-4, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22367424

RESUMO

Maize (corn), Zea mays, is a genetically diverse crop, and we have recently shown that certain open pollinated varieties (OPVs) of Latin American origin possess a trait not present in mainstream commercial varieties: they produce volatiles in response to stemborer oviposition that are attractive to stemborer parasitoids. Here, we tested whether a similar tritrophic effect occurs in the African OPVs 'Nyamula' and 'Jowi'. Herbivore induced plant volatiles (HIPVs) were collected from plants exposed to egg deposition by the stemborer Chilo partellus. In a four-arm olfactometer bioassay, the parasitic wasp Cotesia sesamiae preferred samples containing HIPVs from plants with eggs to samples collected from plants without eggs. EAG-active compounds, including (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), were released in higher amounts from the egg induced headspace samples. Our results suggest that this oviposition trait is not limited to S. American Z. mays germplasm, and that it could be used to increase indirect defense against attack by stemborers.


Assuntos
Herbivoria , Interações Hospedeiro-Parasita , Lepidópteros/anatomia & histologia , Lepidópteros/parasitologia , Oviposição , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia , Zea mays/fisiologia , Animais , Feminino , Lepidópteros/fisiologia
17.
Pest Manag Sci ; 78(11): 4446-4457, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35775140

RESUMO

BACKGROUND: Climate warming presents physiological challenges to insects, manifesting as loss of key life-history fitness traits and survival. For interacting host-parasitoid species, physiological responses to heat stress may vary, thereby potentially uncoupling trophic ecological relationships. Here, we assessed heat tolerance traits and sensitivity to prevailing and future maximum temperatures for the cereal stemborer pests, Chilo partellus, Busseola fusca and Sesamia calamistis and their endo-parasitoids, Cotesia sesamiae and Cotesia flavipes. We further used the machine learning algorithm, Maximum Entropy (MaxEnt), to model current and potential distribution of these species. RESULTS: The mean critical thermal maxima (CTmax ) ranged from 39.5 ± 0.9°C to 44.6 ± 0.6°C and from 46.8 ± 0.7°C to 48.5 ± 0.9°C for parasitoids and stemborers, with C. sesamiae and Ch. partellus exhibiting the lowest and highest CTmax respectively. From the current climate to the 2050s scenario, parasitoids recorded a significant reduction in warming tolerance compared with their hosts. Habitat suitability for all stemborer-parasitoid species was spatially heterogeneous under current and future climatic scenarios. Cotesia sesamiae C. flavipes and B. fusca exhibited significant habitat loss, whereas Ch. partellus and S. calamistis showed a significant habitat gain under future 2050s predictions. Model metrics based on mean area under the curve ranged from 0.72 to 0.84 for all species, indicating a good predictive performance of the models. CONCLUSION: These results suggest C. sesamiae and C. flavipes may face survival constraints or extirpation compared with their pest hosts when environmental temperature reaches their upper thermal limits earlier, likely reducing pest regulation through density-mediated effects. The results demonstrate potential destabilization of stemborer-parasitoid trophic systems potentially compromising biocontrol efficacy under climate warming. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Mariposas , Vespas , Animais , Mudança Climática , Grão Comestível , Mariposas/fisiologia , Controle de Pragas , Vespas/fisiologia
18.
Ecol Lett ; 14(11): 1075-83, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21831133

RESUMO

Natural enemies respond to herbivore-induced plant volatiles (HIPVs), but an often overlooked aspect is that there may be genotypic variation in these 'indirect' plant defence traits within plant species. We found that egg deposition by stemborer moths (Chilo partellus) on maize landrace varieties caused emission of HIPVs that attract parasitic wasps. Notably, however, the oviposition-induced release of parasitoid attractants was completely absent in commercial hybrid maize varieties. In the landraces, not only were egg parasitoids (Trichogramma bournieri) attracted but also larval parasitoids (Cotesia sesamiae). This implies a sophisticated defence strategy whereby parasitoids are recruited in anticipation of egg hatching. The effect was systemic and caused by an elicitor, which could be extracted from egg materials associated with attachment to leaves. Our findings suggest that indirect plant defence traits may have become lost during crop breeding and could be valuable in new resistance breeding for sustainable agriculture.


Assuntos
Herbivoria , Interações Hospedeiro-Parasita , Mariposas , Oviposição , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia , Zea mays/genética , Zea mays/parasitologia , Alcenos/metabolismo , Animais , Comportamento Animal , Quimera , Ecologia , Larva/parasitologia , Sesquiterpenos Policíclicos , Sesquiterpenos/metabolismo
19.
Pest Manag Sci ; 77(5): 2350-2357, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33421266

RESUMO

BACKGROUND: The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is a serious pest of maize. Farming systems such as push-pull or maize-legume intercropping have been reported to reduce FAW infestations significantly. However, the exact mechanisms involved in FAW management have not been practically elucidated. We therefore assessed larval host preference, feeding and survival rate when exposed to four host plants commonly used in push-pull and legume intercropping. We also compared adult moths' oviposition preference between maize and other grasses used as trap crops in push-pull. RESULTS: The larval orientation and settlement study showed that maize was the most preferred host plant followed by bean, desmodium and Brachiaria brizantha cv Mulato II. The larval arrest and dispersal experiment showed that mean number of larvae was significantly higher on maize than on Desmodium or B. brizantha cv Mulato II. However, no significant differences were found between maize and bean after 24 h. Maize was the most consumed plant, followed by bean, desmodium and finally brachiaria. The mean percentage of survival to the pupation stage was significantly higher on maize. The study on FAW oviposition preference showed no significant differences in egg deposited between maize and other grasses. However, B. brizantha cv Xaraes, which received more eggs than maize, could be a promising alternative to B. brizantha cv Mulato II for the control of FAW. CONCLUSION: The study provides a better understanding of the mechanisms involved in the control of fall armyworm under the push-pull and maize legume intercropping. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Brachiaria , Phaseolus , África , Animais , Feminino , Larva , Spodoptera , Zea mays
20.
Sci Total Environ ; 762: 143151, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33143922

RESUMO

Information on weed occurrence within croplands is vital but is often unavailable to support weeding practices and improve cropland productivity assessments. To date, few studies have been conducted to estimate and map weed abundances within agroecological systems from spaceborne images over wide-area landscapes, particularly for the genus Striga. Therefore, this study attempts to increase the detection capacity of Striga at subpixel size using spaceborne high-resolution imagery. In this study, a two-step classification approach was used to detect Striga (Striga hermonthica) weed occurrence within croplands in Rongo, Kenya. Firstly, multidate and multiyear Sentinel-2 (S2) data (2017 to 2018) were utilized to map cropland and non-cropland areas using the random forest algorithm within the Google Earth Engine. The non-cropland class was thereafter masked out from a single date S2 image of the 13th of December 2017. The remaining cropland area was then used in a subpixel multiple endmember spectral mixture analysis (MESMA) to detect Striga occurrence and infestation using endmembers (EMs) obtained from the in-situ hyperspectral data. The gathered in-situ hyperspectral data were resampled to the spectral waveband configurations of S2 and three representative EMs were inferred, namely: (1) Striga, (2) crop and other weeds, and (3) soil. Overall classification accuracies of 88% and 78% for the pixel-based cropland mapping and subpixel Striga detection were achieved, respectively. Furthermore, an F-score (0.84) and a root mean square error (0.0075) showed that the MESMA subpixel algorithm provides plausible results for predicting the relative abundance of Striga within each S2 pixel at a landscape scale. The capability of MESMA together with a cropland classification hierarchical approach was thus proven to be suited for Striga detection in a heterogenous agroecological system. These results can be used to guide in the adaptation, mitigation, and remediation of already infested areas, thereby avoiding further Striga infestation of new croplands.


Assuntos
Striga , Quênia , Plantas Daninhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA