Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Mov Disord ; 39(10): 1740-1751, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39192744

RESUMO

BACKGROUND: Parkinson's disease (PD) has been consistently linked to alterations within the gut microbiome. OBJECTIVE: Our goal was to identify microbial features associated with PD incidence and progression. METHODS: Metagenomic sequencing was used to characterize taxonomic and functional changes to the PD microbiome and to explore their relation to bacterial metabolites and disease progression. Motor and non-motor symptoms were tracked using Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and levodopa equivalent dose across ≤5 yearly study visits. Stool samples were collected at baseline for metagenomic sequencing (176 PD, 100 controls). RESULTS: PD-derived stool samples had reduced intermicrobial connectivity and seven differentially abundant species compared to controls. A suite of bacterial functions differed between PD and controls, including depletion of carbohydrate degradation pathways and enrichment of ribosomal genes. Faecalibacterium prausnitzii-specific reads contributed significantly to more than half of all differentially abundant functional terms. A subset of disease-associated functional terms correlated with faster progression of MDS-UPDRS part IV and separated those with slow and fast progression with moderate accuracy within a random forest model (area under curve = 0.70). Most PD-associated microbial trends were stronger in those with symmetric motor symptoms. CONCLUSION: We provide further evidence that the PD microbiome is characterized by reduced intermicrobial communication and a shift to proteolytic metabolism in lieu of short-chain fatty acid production, and suggest that these microbial alterations may be relevant to disease progression. We also describe how our results support the existence of gut-first versus brain-first PD subtypes. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Fezes , Microbioma Gastrointestinal , Metagenômica , Doença de Parkinson , Humanos , Doença de Parkinson/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Metagenômica/métodos , Fezes/microbiologia , Progressão da Doença
2.
J Alzheimers Dis ; 87(1): 247-258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275538

RESUMO

BACKGROUND: Despite decades of research, our understanding of Alzheimer's disease (AD) etiology remains incomplete. In recent years, appreciation has grown for potential roles for the microbiota in shaping neurological health. OBJECTIVE: This study aimed to examine associations between the microbiota and AD in a human cross-sectional cohort. METHODS: Forty-five AD patients and 54 matched controls were recruited in Vancouver, Canada. Fecal and oral samples underwent 16S microbiota sequencing. A wide array of demographic and clinical data were collected. Differences between participant groups were assessed, and associations between microbes and clinical variables were examined within the AD population. RESULTS: The gut microbiota of AD patients displayed lower diversity relative to controls, although taxonomic differences were sparse. In contrast, the AD oral microbiota displayed higher diversity, with several taxonomic differences relative to controls, including a lower abundance of the families Streptococcaceae and Actinomycetaceae, and a higher abundance of Weeksellaceae, among others. The periodontitis-associated oral microbe Porphyromonas gingivalis was 5 times more prevalent among patients. No significant associations between gut or oral microbes and cognition were detected, but several correlations existed between microbes and mood disorders and BMI among patients, including a strong positive correlation between Alphaproteobacteria and depression score. CONCLUSION: The gut microbiota of AD patients was not overtly different from controls, although it displayed lower diversity, an overall marker of microbiota health. The oral microbiota did display marked differences. Cognition was not associated with a microbial signature, but other relevant AD factors including mood and BMI did demonstrate an association.


Assuntos
Doença de Alzheimer , Microbiota , Doença de Alzheimer/microbiologia , Canadá/epidemiologia , Estudos Transversais , Humanos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA