Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Nature ; 609(7929): 975-985, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104561

RESUMO

Understanding cell state transitions and purposefully controlling them is a longstanding challenge in biology. Here we present cell state transition assessment and regulation (cSTAR), an approach for mapping cell states, modelling transitions between them and predicting targeted interventions to convert cell fate decisions. cSTAR uses omics data as input, classifies cell states, and develops a workflow that transforms the input data into mechanistic models that identify a core signalling network, which controls cell fate transitions by influencing whole-cell networks. By integrating signalling and phenotypic data, cSTAR models how cells manoeuvre in Waddington's landscape1 and make decisions about which cell fate to adopt. Notably, cSTAR devises interventions to control the movement of cells in Waddington's landscape. Testing cSTAR in a cellular model of differentiation and proliferation shows a high correlation between quantitative predictions and experimental data. Applying cSTAR to different types of perturbation and omics datasets, including single-cell data, demonstrates its flexibility and scalability and provides new biological insights. The ability of cSTAR to identify targeted perturbations that interconvert cell fates will enable designer approaches for manipulating cellular development pathways and mechanistically underpinned therapeutic interventions.


Assuntos
Diferenciação Celular , Modelos Biológicos , Transdução de Sinais , Proliferação de Células , Conjuntos de Dados como Assunto , Fenótipo , Análise de Célula Única , Fluxo de Trabalho
2.
Cell ; 141(5): 884-96, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20493519

RESUMO

Activation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) determines distinct cell-fate decisions, although signals propagate through shared pathways. Using mathematical modeling and experimental approaches, we unravel how HRG and EGF generate distinct, all-or-none responses of the phosphorylated transcription factor c-Fos. In the cytosol, EGF induces transient and HRG induces sustained ERK activation. In the nucleus, however, ERK activity and c-fos mRNA expression are transient for both ligands. Knockdown of dual-specificity phosphatases extends HRG-stimulated nuclear ERK activation, but not c-fos mRNA expression, implying the existence of a HRG-induced repressor of c-fos transcription. Further experiments confirmed that this repressor is mainly induced by HRG, but not EGF, and requires new protein synthesis. We show how a spatially distributed, signaling-transcription cascade robustly discriminates between transient and sustained ERK activities at the c-Fos system level. The proposed control mechanisms are general and operate in different cell types, stimulated by various ligands.


Assuntos
Modelos Biológicos , Proteínas Proto-Oncogênicas c-fos/genética , Linhagem Celular Tumoral , Fosfatases de Especificidade Dupla/metabolismo , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neuregulina-1/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transcrição Gênica
3.
Cell ; 133(4): 566-7, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18485861

RESUMO

Spatial separation of component enzymes in a pathway creates microdomains and gradients of signaling activities. Imaging techniques and computational modeling help us to understand the complex relationships between signaling and spatial information. In this issue, Neves et al. (2008) report how the propagation of spatial information is controlled by the shape of hippocampal neurons and feedback and feed-forward motifs of the beta-adrenergic receptor signaling pathway.


Assuntos
Neurônios/citologia , Neurônios/metabolismo , Transdução de Sinais , Animais , Forma Celular , Retroalimentação Fisiológica , Hipocampo/citologia , Receptores Adrenérgicos beta 2/metabolismo
4.
Nat Rev Mol Cell Biol ; 11(6): 414-26, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20495582

RESUMO

Although we have amassed extensive catalogues of signalling network components, our understanding of the spatiotemporal control of emergent network structures has lagged behind. Dynamic behaviour is starting to be explored throughout the genome, but analysis of spatial behaviours is still confined to individual proteins. The challenge is to reveal how cells integrate temporal and spatial information to determine specific biological functions. Key findings are the discovery of molecular signalling machines such as Ras nanoclusters, spatial activity gradients and flexible network circuitries that involve transcriptional feedback. They reveal design principles of spatiotemporal organization that are crucial for network function and cell fate decisions.


Assuntos
Comunicação Celular , Transdução de Sinais , Animais , Linhagem da Célula , Humanos , Fatores de Tempo , Transcrição Gênica
5.
Semin Cancer Biol ; 54: 162-173, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29518522

RESUMO

RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.


Assuntos
Regulação da Expressão Gênica , Modelos Biológicos , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo , Animais , Proteínas de Transporte , Descoberta de Drogas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , Transporte Proteico , Biologia de Sistemas/métodos , Proteínas ras/antagonistas & inibidores , Proteínas ras/química
6.
Small ; 16(21): e1907476, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32227434

RESUMO

Inhaled nanoparticles constitute a potential health hazard due to their size-dependent lung deposition and large surface to mass ratio. Exposure to high levels contributes to the risk of developing respiratory and cardiovascular diseases, as well as of lung cancer. Particle-induced acute phase response may be an important mechanism of action of particle-induced cardiovascular disease. Here, the authors review new important scientific evidence showing causal relationships between inhalation of particle and nanomaterials, induction of acute phase response, and risk of cardiovascular disease. Particle-induced acute phase response provides a means for risk assessment of particle-induced cardiovascular disease and underscores cardiovascular disease as an occupational disease.


Assuntos
Reação de Fase Aguda , Doenças Cardiovasculares , Exposição por Inalação , Nanopartículas , Reação de Fase Aguda/induzido quimicamente , Doenças Cardiovasculares/induzido quimicamente , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Doenças Profissionais/induzido quimicamente , Tamanho da Partícula , Material Particulado/toxicidade
7.
PLoS Comput Biol ; 15(1): e1006706, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653502

RESUMO

Receptor tyrosine kinases (RTKs) typically contain multiple autophosphorylation sites in their cytoplasmic domains. Once activated, these autophosphorylation sites can recruit downstream signaling proteins containing Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains, which recognize phosphotyrosine-containing short linear motifs (SLiMs). These domains and SLiMs have polyspecific or promiscuous binding activities. Thus, multiple signaling proteins may compete for binding to a common SLiM and vice versa. To investigate the effects of competition on RTK signaling, we used a rule-based modeling approach to develop and analyze models for ligand-induced recruitment of SH2/PTB domain-containing proteins to autophosphorylation sites in the insulin-like growth factor 1 (IGF1) receptor (IGF1R). Models were parameterized using published datasets reporting protein copy numbers and site-specific binding affinities. Simulations were facilitated by a novel application of model restructuration, to reduce redundancy in rule-derived equations. We compare predictions obtained via numerical simulation of the model to those obtained through simple prediction methods, such as through an analytical approximation, or ranking by copy number and/or KD value, and find that the simple methods are unable to recapitulate the predictions of numerical simulations. We created 45 cell line-specific models that demonstrate how early events in IGF1R signaling depend on the protein abundance profile of a cell. Simulations, facilitated by model restructuration, identified pairs of IGF1R binding partners that are recruited in anti-correlated and correlated fashions, despite no inclusion of cooperativity in our models. This work shows that the outcome of competition depends on the physicochemical parameters that characterize pairwise interactions, as well as network properties, including network connectivity and the relative abundances of competitors.


Assuntos
Modelos Biológicos , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Análise por Conglomerados , Biologia Computacional , Humanos , Camundongos , Fosforilação , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Domínios de Homologia de src
8.
J Biol Chem ; 293(6): 2206-2218, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29233889

RESUMO

Feedback control is a key mechanism in signal transduction, intimately involved in regulating the outcome of the cellular response. Here, we report a novel mechanism by which PHLDA1, Pleckstrin homology-like domain, family A, member 1, negatively regulates ErbB receptor signaling by inhibition of receptor oligomerization. We have found that the ErbB3 ligand, heregulin, induces PHILDA1 expression in MCF-7 cells. Transcriptionally-induced PHLDA1 protein directly binds to ErbB3, whereas knockdown of PHLDA1 increases complex formation between ErbB3 and ErbB2. To provide insight into the mechanism for our time-course and single-cell experimental observations, we performed a systematic computational search of network topologies of the mathematical models based on receptor dimer-tetramer formation in the ErbB activation processes. Our results indicate that only a model in which PHLDA1 inhibits formation of both dimers and tetramer can explain the experimental data. Predictions made from this model were further validated by single-molecule imaging experiments. Our studies suggest a unique regulatory feature of PHLDA1 to inhibit the ErbB receptor oligomerization process and thereby control the activity of receptor signaling network.


Assuntos
Receptor ErbB-3/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Células MCF-7 , Modelos Químicos , Neuregulina-1/metabolismo , Multimerização Proteica , Transdução de Sinais , Imagem Individual de Molécula , Análise de Célula Única , Fatores de Transcrição/fisiologia , Transcrição Gênica
9.
Semin Cell Dev Biol ; 50: 85-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26481970

RESUMO

The notion of feedback is fundamental for understanding signal transduction networks. Feedback loops attenuate or amplify signals, change the network dynamics and modify the input-output relationships between the signal and the target. Negative feedback provides robustness to noise and adaptation to perturbations, but as a double-edged sword can prevent effective pathway inhibition by a drug. Positive feedback brings about switch-like network responses and can convert analog input signals into digital outputs, triggering cell fate decisions and phenotypic changes. We show how a multitude of protein-protein interactions creates hidden feedback loops in signal transduction cascades. Drug treatments that interfere with feedback regulation can cause unexpected adverse effects. Combinatorial molecular interactions generated by pathway crosstalk and feedback loops often bypass the block caused by targeted therapies against oncogenic mutated kinases. We discuss mechanisms of drug resistance caused by network adaptations and suggest that development of effective drug combinations requires understanding of how feedback loops modulate drug responses.


Assuntos
Antineoplásicos/uso terapêutico , Retroalimentação Fisiológica , Neoplasias/tratamento farmacológico , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
10.
Semin Cell Dev Biol ; 58: 96-107, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27350026

RESUMO

The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem da Célula , Retroalimentação Fisiológica , Humanos , Neoplasias/patologia
11.
Brief Bioinform ; 17(4): 593-602, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26443615

RESUMO

The detailed, atomistic-level understanding of molecular signaling along the tumor-suppressive Hippo signaling pathway that controls tissue homeostasis by balancing cell proliferation and death through apoptosis is a promising avenue for the discovery of novel anticancer drug targets. The activation of kinases such as Mammalian STE20-Like Protein Kinases 1 and 2 (MST1 and MST2)-modulated through both homo- and heterodimerization (e.g. interactions with Ras association domain family, RASSF, enzymes)-is a key upstream event in this pathway and remains poorly understood. On the other hand, RASSFs (such as RASSF1A or RASSF5) act as important apoptosis activators and tumor suppressors, although their exact regulatory roles are also unclear. We present recent molecular studies of signaling along the Ras-RASSF-MST pathway, which controls growth and apoptosis in eukaryotic cells, including a variety of modern molecular modeling and simulation techniques. Using recently available structural information, we discuss the complex regulatory scenario according to which RASSFs perform dual signaling functions, either preventing or promoting MST2 activation, and thus control cell apoptosis. Here, we focus on recent studies highlighting the special role being played by the specific interactions between the helical Salvador/RASSF/Hippo (SARAH) domains of MST2 and RASSF1a or RASSF5 enzymes. These studies are crucial for integrating atomistic-level mechanistic information about the structures and conformational dynamics of interacting proteins, with information available on their system-level functions in cellular signaling.


Assuntos
Ligação Proteica , Animais , Apoptose , Modelos Moleculares , Proteínas Serina-Treonina Quinases , Transdução de Sinais
12.
PLoS Comput Biol ; 12(10): e1005051, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27716844

RESUMO

RASSF enzymes act as key apoptosis activators and tumor suppressors, being downregulated in many human cancers, although their exact regulatory roles remain unknown. A key downstream event in the RASSF pathway is the regulation of MST kinases, which are main effectors of RASSF-induced apoptosis. The regulation of MST1/2 includes both homo- and heterodimerization, mediated by helical SARAH domains, though the underlying molecular interaction mechanism is unclear. Here, we study the interactions between RASSF1A, RASSF5, and MST2 SARAH domains by using both atomistic molecular simulation techniques and experiments. We construct and study models of MST2 homodimers and MST2-RASSF SARAH heterodimers, and we identify the factors that control their high molecular stability. In addition, we also analyze both computationally and experimentally the interactions of MST2 SARAH domains with a series of synthetic peptides particularly designed to bind to it, and hope that our approach can be used to address some of the challenging problems in designing new anti-cancer drugs.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/ultraestrutura , Inibidor de Quinase Dependente de Ciclina p15/química , Inibidor de Quinase Dependente de Ciclina p15/ultraestrutura , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Simulação de Acoplamento Molecular , Sítios de Ligação , Dimerização , Ativação Enzimática , Ligação Proteica , Conformação Proteica , Domínios Proteicos
13.
Mol Syst Biol ; 11(11): 838, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26613961

RESUMO

Transient versus sustained ERK MAP kinase (MAPK) activation dynamics induce proliferation versus differentiation in response to epidermal (EGF) or nerve (NGF) growth factors in PC-12 cells. Duration of ERK activation has therefore been proposed to specify cell fate decisions. Using a biosensor to measure ERK activation dynamics in single living cells reveals that sustained EGF/NGF application leads to a heterogeneous mix of transient and sustained ERK activation dynamics in distinct cells of the population, different than the population average. EGF biases toward transient, while NGF biases toward sustained ERK activation responses. In contrast, pulsed growth factor application can repeatedly and homogeneously trigger ERK activity transients across the cell population. These datasets enable mathematical modeling to reveal salient features inherent to the MAPK network. Ultimately, this predicts pulsed growth factor stimulation regimes that can bypass the typical feedback activation to rewire the system toward cell differentiation irrespective of growth factor identity.


Assuntos
Diferenciação Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Biologia de Sistemas/métodos , Animais , Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos
14.
Cell Mol Life Sci ; 72(12): 2431-43, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25697863

RESUMO

Cyclooxygenase 2 (COX2), a key regulatory enzyme of the prostaglandin/eicosanoid pathway, is an important target for anti-inflammatory therapy. It is highly induced by pro-inflammatory cytokines in a Nuclear factor kappa B (NFκB)-dependent manner. However, the mechanisms determining the amplitude and dynamics of this important pro-inflammatory event are poorly understood. Furthermore, there is significant difference between human and mouse COX2 expression in response to the inflammatory stimulus tumor necrosis factor alpha (TNFα). Here, we report the presence of a molecular logic AND gate composed of two NFκB response elements (NREs) which controls the expression of human COX2 in a switch-like manner. Combining quantitative kinetic modeling and thermostatistical analysis followed by experimental validation in iterative cycles, we show that the human COX2 expression machinery regulated by NFκB displays features of a logic AND gate. We propose that this provides a digital, noise-filtering mechanism for a tighter control of expression in response to TNFα, such that a threshold level of NFκB activation is required before the promoter becomes active and initiates transcription. This NFκB-regulated AND gate is absent in the mouse COX2 promoter, most likely contributing to its differential graded response in promoter activity and protein expression to TNFα. Our data suggest that the NFκB-regulated AND gate acts as a novel mechanism for controlling the expression of human COX2 to TNFα, and its absence in the mouse COX2 provides the foundation for further studies on understanding species-specific differential gene regulation.


Assuntos
Ciclo-Oxigenase 2/genética , Regulação da Expressão Gênica , Modelos Teóricos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Animais , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células HT29 , Humanos , Camundongos , NF-kappa B/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
15.
Proc Natl Acad Sci U S A ; 110(31): E2934-43, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23847209

RESUMO

Serine/threonine/tyrosine-interacting protein (STYX) is a catalytically inactive member of the dual-specificity phosphatases (DUSPs) family. Whereas the role of DUSPs in cellular signaling is well explored, the function of STYX is still unknown. Here, we identify STYX as a spatial regulator of ERK signaling. We used predictive-model simulation to test several hypotheses for possible modes of STYX action. We show that STYX localizes to the nucleus, competes with nuclear DUSP4 for binding to ERK, and acts as a nuclear anchor that regulates ERK nuclear export. Depletion of STYX increases ERK activity in both cytosol and nucleus. Importantly, depletion of STYX causes an ERK-dependent fragmentation of the Golgi apparatus and inhibits Golgi polarization and directional cell migration. Finally, we show that overexpression of STYX reduces ERK1/2 activation, thereby blocking PC12 cell differentiation. Overall, our results identify STYX as an important regulator of ERK1/2 signaling critical for cell migration and PC12 cell differentiation.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas de Transporte/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Ativação Enzimática/genética , Técnicas de Silenciamento de Genes , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Proteínas Nucleares/genética , Células PC12 , Ratos
16.
Angew Chem Int Ed Engl ; 55(3): 983-6, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26644280

RESUMO

RAF kinases are key players in the MAPK signaling pathway and are important targets for personalized cancer therapy. RAF dimerization is part of the physiological activation mechanism, together with phosphorylation, and is known to convey resistance to RAF inhibitors. Herein, molecular dynamics simulations are used to show that phosphorylation of a key N-terminal acidic (NtA) motif facilitates RAF dimerization by introducing several interprotomer salt bridges between the αC-helix and charged residues upstream of the NtA motif. Additionally, we show that the R-spine of RAF interacts with a conserved Trp residue in the vicinity of the NtA motif, connecting the active sites of two protomers and thereby modulating the cooperative interactions in the RAF dimer. Our findings provide a first structure-based mechanism for the auto-transactivation of RAF and could be generally applicable to other kinases, opening new pathways for overcoming dimerization-related drug resistance.


Assuntos
Ativação Transcricional , Quinases raf/metabolismo , Dimerização , Fosforilação , Conformação Proteica , Quinases raf/química
17.
J Cell Sci ; 126(Pt 6): 1454-63, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23390316

RESUMO

Activation of the hypoxia-inducible factor (HIF) pathway is a critical step in the transcriptional response to hypoxia. Although many of the key proteins involved have been characterised, the dynamics of their interactions in generating this response remain unclear. In the present study, we have generated a comprehensive mathematical model of the HIF-1α pathway based on core validated components and dynamic experimental data, and confirm the previously described connections within the predicted network topology. Our model confirms previous work demonstrating that the steps leading to optimal HIF-1α transcriptional activity require sequential inhibition of both prolyl- and asparaginyl-hydroxylases. We predict from our model (and confirm experimentally) that there is residual activity of the asparaginyl-hydroxylase FIH (factor inhibiting HIF) at low oxygen tension. Furthermore, silencing FIH under conditions where prolyl-hydroxylases are inhibited results in increased HIF-1α transcriptional activity, but paradoxically decreases HIF-1α stability. Using a core module of the HIF network and mathematical proof supported by experimental data, we propose that asparaginyl hydroxylation confers a degree of resistance upon HIF-1α to proteosomal degradation. Thus, through in vitro experimental data and in silico predictions, we provide a comprehensive model of the dynamic regulation of HIF-1α transcriptional activity by hydroxylases and use its predictive and adaptive properties to explain counter-intuitive biological observations.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Modelos Biológicos , Proteínas Repressoras/metabolismo , Biologia Computacional , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/farmacologia , Oxigênio/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Proteínas Repressoras/farmacologia , Transdução de Sinais , Ativação Transcricional/genética
18.
PLoS Comput Biol ; 10(2): e1003385, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24550716

RESUMO

The ever-increasing capacity of biological molecular data acquisition outpaces our ability to understand the meaningful relationships between molecules in a cell. Multiple databases were developed to store and organize these molecular data. However, emerging fundamental questions about concerted functions of these molecules in hierarchical cellular networks are poorly addressed. Here we review recent advances in the development of publically available databases that help us analyze the signal integration and processing by multilayered networks that specify biological responses in model organisms and human cells.


Assuntos
Bases de Dados Factuais , Modelos Biológicos , Transdução de Sinais , Animais , Biologia Computacional , Descoberta de Drogas , Humanos , Integração de Sistemas
19.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328237

RESUMO

A key feature of arteriogenesis is capillary-to-arterial endothelial cell fate transition. Although a number of studies in the past two decades suggested this process is driven by VEGF activation of Notch signaling, how arteriogenesis is regulated remains poorly understood. Here we report that arterial specification is mediated by fluid shear stress (FSS) independent of VEGFR2 signaling and that a decline in VEGFR2 signaling is required for arteriogenesis to fully take place. VEGF does not induce arterial fate in capillary ECs and, instead, counteracts FSS-driven capillary-to-arterial cell fate transition. Mechanistically, FSS-driven arterial program involves both Notch-dependent and Notch-independent events. Sox17 is the key mediator of the FSS-induced arterial specification and a target of VEGF-FSS competition. These findings suggest a new paradigm of VEGF-FSS crosstalk coordinating angiogenesis, arteriogenesis and capillary maintenance.

20.
bioRxiv ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38496444

RESUMO

A quarter of human population is infected with Mycobacterium tuberculosis, but less than 10% of those infected develop clinical, mostly pulmonary, TB. To dissect mechanisms of susceptibility in immunocompetent individuals, we developed a genetically defined sst1-susceptible mouse model that uniquely reproduces a defining feature of human TB: development of necrotic lung lesions after infection with virulent Mtb. In this study, we explored the connectivity of the sst1-regulated pathways during prolonged macrophage activation with TNF. We determined that the aberrant response of the sst1-susceptible macrophages to TNF was primarily driven by conflicting Myc and antioxidant response pathways that resulted in a coordinated failure to properly sequester intracellular iron and activate ferroptosis inhibitor enzymes. Consequently, iron-mediated lipid peroxidation fueled IFNß superinduction and sustained the Type I Interferon (IFN-I) pathway hyperactivity that locked the sst1-susceptible macrophages in a state of unresolving stress and compromised their resistance to Mtb. The accumulation of the aberrantly activated, stressed, macrophages within granuloma microenvironment led to the local failure of anti-tuberculosis immunity and tissue necrosis. Our findings suggest a novel link between metabolic dysregulation in macrophages and susceptibility to TB, offering insights into potential therapeutic targets aimed at modulating macrophage function and improving TB control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA