Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stud Mycol ; 101: 245-286, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36059899

RESUMO

Over 80 species of hypocrealean fungi are reported as pathogens of spiders and harvestmen. Among these fungi, the genus Gibellula is highly regarded as a specialised spider-killer that has never been reported to infect other arthropods. While more than 20 species of Gibellula are known, few attempts to identify the infected spiders have been made despite the fact that the host specificity can help identify the fungal species. Here, we morphologically describe and illustrate eight new species of Gibellula and three new records from Thailand of known species along with the multi-gene phylogeny that clearly showed the segregation among the proposed species. Examination of the Gibellula-infected spider hosts identified Oxyopidae, Uloboridae and, for the first time, the ant-mimicking genus Myrmarachne. Taxonomic novelties: New species: Gibellula brevistipitata Kuephadungphan, Tasanathai & Luangsa-ard, G. longicaudata Tasanathai, Kuephadungphan & Luangsa-ard, G. longispora Kuephadungphan & Luangsa-ard, G. nigelii Kuephadungphan, Tasanathai & Luangsa-ard, G. parvula Kuephadungphan, Tasanathai & Luangsa-ard, G. pilosa Kuephadungphan, Tasanathai & Luangsa-ard, G. solita Kuephadungphan, Tasanathai & Luangsa-ard, G. trimorpha Tasanathai, Khonsanit, Kuephadungphan & Luangsa-ard. Citation: Kuephadungphan W, Petcharad B, Tasanathai K, Thanakitpipattana D, Kobmoo N, Khonsanit A, Samson RA, Luangsa-ard JJ (2022). Multi-locus phylogeny unmasks hidden species within the specialised spider-parasitic fungus, Gibellula (Hypocreales, Cordycipitaceae) in Thailand. Studies in Mycology 101: 245-286. doi: 10.3114/sim.2022.101.04.

2.
Persoonia ; 47: 136-150, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37693793

RESUMO

Fungi are rich in complexes of cryptic species that need a combination of different approaches to be delimited, including genomic information. Beauveria (Cordycipitaceae, Hypocreales) is a well-known genus of entomopathogenic fungi, used as a biocontrol agent. In this study we present a polyphasic taxonomy regarding two widely distributed complexes of Beauveria: B. asiatica and B. bassiana s.lat. Some of the genetic groups as previously detected within both taxa were either confirmed or fused using population genomics. High levels of divergence were found between two clades in B. asiatica and among three clades in B. bassiana, supporting their subdivision as distinct species. Morphological examination focusing on the width and the length of phialides and conidia showed no difference among the clades within B. bassiana while conidial length was significantly different among clades within B. asiatica. The secondary metabolite profiles obtained by liquid chromatography-mass spectrometry (LC-MS) allowed a distinction between B. asiatica and B. bassiana, but not between the clades therein. Based on these genomic, morphological, chemical data, we proposed a clade of B. asiatica as a new species, named B. thailandica, and two clades of B. bassiana to respectively represent B. namnaoensis and B. neobassiana spp. nov. Such closely related but divergent species with different host ranges have potential to elucidate the evolution of host specificity, with potential biocontrol application. Citation: Kobmoo N, Arnamnart N, Pootakham W, et al. 2021. The integrative taxonomy of Beauveria asiatica and B. bassiana species complexes with whole-genome sequencing, morphometric and chemical analyses. Persoonia 47: 136-150. https://doi.org/10.3767/persoonia.2021.47.04.

3.
Persoonia ; 47: 136-150, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38352976

RESUMO

Fungi are rich in complexes of cryptic species that need a combination of different approaches to be delimited, including genomic information. Beauveria (Cordycipitaceae, Hypocreales) is a well-known genus of entomopathogenic fungi, used as a biocontrol agent. In this study we present a polyphasic taxonomy regarding two widely distributed complexes of Beauveria: B. asiatica and B. bassiana s.lat. Some of the genetic groups as previously detected within both taxa were either confirmed or fused using population genomics. High levels of divergence were found between two clades in B. asiatica and among three clades in B. bassiana, supporting their subdivision as distinct species. Morphological examination focusing on the width and the length of phialides and conidia showed no difference among the clades within B. bassiana while conidial length was significantly different among clades within B. asiatica. The secondary metabolite profiles obtained by liquid chromatography-mass spectrometry (LC-MS) allowed a distinction between B. asiatica and B. bassiana, but not between the clades therein. Based on these genomic, morphological, chemical data, we proposed a clade of B. asiatica as a new species, named B. thailandica, and two clades of B. bassiana to respectively represent B. namnaoensis and B. neobassiana spp. nov. Such closely related but divergent species with different host ranges have potential to elucidate the evolution of host specificity, with potential biocontrol application. Citation: Kobmoo N, Arnamnart N, Pootakham W, et al. 2021. The integrative taxonomy of Beauveria asiatica and B. bassiana species complexes with whole-genome sequencing, morphometric and chemical analyses. Persoonia 47: 136-150. https://doi.org/10.3767/persoonia.2021.47.04.

4.
Stud Mycol ; 95: 171-251, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32855740

RESUMO

Over the last two decades the molecular phylogeny and classification of Metarhizium has been widely studied. Despite these efforts to understand this enigmatic genus, the basal lineages in Metarhizium are still poorly resolved. In this study, a phylogenetic framework is reconstructed for the Clavicipitaceae focusing on Metarhizium through increased taxon-sampling using five genomic loci (SSU, LSU, tef, rpb1, rpb2) and the barcode marker ITS rDNA. Multi-gene phylogenetic analyses and morphological characterisation of green-spored entomopathogenic Metarhizium isolates from Thailand and soil isolates of M. carneum and M. marquandii reveal their ecological, genetic and species diversity. Nineteen new species are recognised in the Metarhizium clade with narrow host ranges: two new species are found in the M. anisopliae complex - M. clavatum on Coleoptera larvae and M. sulphureum on Lepidoptera larvae; four new species are found in the M. flavoviride complex - M. biotecense and M. fusoideum on brown plant hoppers (Hemiptera), M. culicidarum on mosquitoes, M. nornnoi on Lepidoptera larvae; three new species M. megapomponiae, M. cicadae, M. niveum occur on cicadas; five new species M. candelabrum, M. cercopidarum, M. ellipsoideum, M. huainamdangense M. ovoidosporum occur on planthoppers, leafhoppers and froghoppers (Hemiptera); one new species M. eburneum on Lepidoptera pupae; and four new species M. phuwiangense, M. purpureum, M. purpureonigrum, M. flavum on Coleoptera . Of these 19 new species, seven produce a sexual morph (M. clavatum, M. eburneum, M. flavum, M. phuwiangense, M. purpureonigrum, M. purpureum, and M. sulphureum) and asexual morphs are found in the remaining new species and also in M. sulphureum, M. purpureonigrum and M. purpureum. Metarhizium blattodeae, M. koreanum and M. viridulum are new records for Thailand. An alternative neotype for Metarhizium anisopliae is proposed based on multi-gene and 5'tef analyses showing that CBS 130.71 from Ukraine is more suitable, being from a much closer geographical location to Metchnikoff's Metarhizium anisopliae. This isolate is distinct from the neotype of Metarhizium anisopliae var. anisopliae proposed by M. Tulloch from Ethiopia (ARSEF 7487). Six new genera are established for monophyletic clades subtending the core Metarhizium clade, including Keithomyces, Marquandomyces, Papiliomyces, Purpureomyces, Sungia, and Yosiokobayasia. Metarhizium carneum, M. aciculare, and M. neogunnii are combined in Keithomyces and one new combination for M. marquandii in Marquandomyces is proposed. Purpureomyces is introduced for species producing purple stromata including a new combination for M. khaoyaiense and two new species P. maesotensis and P. pyriformis. Papiliomyces contains two new combinations for M. liangshanense and Metacordyceps shibinensis. The genus Sungia is proposed for the Korean species M. yongmunense on Lepidoptera pupa and Yosiokobayasia for the Japanese species M. kusanagiense also on Lepidoptera pupa. A synoptic and dichotomous key to the accepted taxa is provided together with tables listing distinguishing morphological characters between species, host preferences, and geography.

5.
Persoonia ; 44: 140-160, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33116339

RESUMO

Two new fungal genera and six species occurring on insects in the orders Orthoptera and Phasmatodea (superorder Orthopterida) were discovered that are distributed across three families in the Hypocreales. Sixty-seven sequences generated in this study were used in a multi-locus phylogenetic study comprising SSU, LSU, TEF, RPB1 and RPB2 together with the nuclear intergenic region (IGR). These new taxa are introduced as Metarhizium gryllidicola, M. phasmatodeae, Neotorrubiella chinghridicola, Ophiocordyceps kobayasii, O. krachonicola and Petchia siamensis. Petchia siamensis shows resemblance to Cordyceps mantidicola by infecting egg cases (ootheca) of praying mantis (Mantidae) and having obovoid perithecial heads but differs in the size of its perithecia and ascospore shape. Two new species in the Metarhizium cluster belonging to the M. anisopliae complex are described that differ from known species with respect to phialide size, conidia and host. Neotorrubiella chinghridicola resembles Torrubiella in the absence of a stipe and can be distinguished by the production of whole ascospores, which are not commonly found in Torrubiella (except in Torrubiella hemipterigena, which produces multiseptate, whole ascospores). Ophiocordyceps krachonicola is pathogenic to mole crickets and shows resemblance to O. nigrella, O. ravenelii and O. barnesii in having darkly pigmented stromata. Ophiocordyceps kobayasii occurs on small crickets, and is the phylogenetic sister species of taxa in the 'sphecocephala' clade.

6.
Stud Mycol ; 89: 125-142, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29910519

RESUMO

Ophiocordyceps is a heterogeneous, species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) that includes invertebrate-pathogenic taxa. In this study, seven new species in Ophiocordyceps producing superficial perithecia infecting various insect hosts (Lepidoptera, Hemiptera) are described from Thailand - Ophiocordyceps brunneinigra, O. brunneiperitheciata, O. geometridicola, O. multiperitheciata, O. pauciovoperitheciata, O. pseudoacicularis and O. spataforae. Phylogenetic analyses based on multigene loci comprising the large subunit of the ribosomal DNA (LSU), partial sequences of elongation factor 1-alpha (TEF) and the largest and second largest subunit of the RNA polymerase (RPB1, PRB2) strongly support these new species of Ophiocordyceps in the Ophiocordycipitaceae. They differ from species previously described species Ophiocordyceps acicularis, O. atewensis, O. cochlidiicola, and O. crinalis, in the shape and sizes of distinguishing characters such as perithecia, ascospores and conidia. We also report a new record of O. macroacicularis in Thailand.

7.
Fungal Syst Evol ; 13: 441-494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39135884

RESUMO

Two new genera, 17 new species, two epitypes, and six interesting new host and / or geographical records are introduced in this study. New genera include: Cadophorella (based on Cadophorella faginea) and Neosatchmopsis (based on Neosatchmopsis ogrovei). New species include: Alternaria halotolerans (from hypersaline sea water, Qatar), Amylostereum stillwellii (from mycangia of Sirex areolatus, USA), Angiopsora anthurii (on leaves of Anthurium andraeanum, Brazil), Anthracocystis zeae-maydis (from pre-stored Zea mays, South Africa), Bisifusarium solicola (from soil, South Africa), Cadophorella faginea (from dead capsule of Fagus sylvatica, Germany), Devriesia mallochii (from house dust, Canada), Fusarium kirstenboschense (from soil, South Africa), Macroconia podocarpi (on ascomata of ascomycete on twigs of Podocarpus falcatus, South Africa), Neosatchmopsis ogrovei (on Eucalyptus leaf litter, Spain), Ophiocordyceps kuchinaraiensis (on Coleoptera larva, Thailand), Penicillium cederbergense (from soil, South Africa), Penicillium pascuigraminis (from pasture mulch, South Africa), Penicillium viridipigmentum (from soil, South Africa), Pleurotheciella acericola (on stem, bark of living tree of Acer sp., Germany), Protocreopsis physciae (on Physcia caesia, Netherlands), and Talaromyces podocarpi (from soil, South Africa). Citation: Visagie CM, Yilmaz N, Allison JD, Barreto RW, Boekhout T, Boers J, Delgado MA, Dewing C, Fitza KNE, Furtado ECA, Gaya E, Hill R, Hobden A, Hu DM, Hülsewig T, Khonsanit A, Kolecka A, Luangsa-ard JJ, Mthembu A, Pereira CM, Price J-L, Pringle A, Qikani N, Sandoval-Denis M, Schumacher RK, Slippers B, Tennakoon DS, Thanakitpipattana D, van Vuuren NI, Groenewald JZ, Crous PW (2024). New and Interesting Fungi. 7. Fungal Systematics and Evolution 13: 441-494. doi: 10.3114/fuse.2024.13.12.

8.
J Invertebr Pathol ; 111(3): 217-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22959811

RESUMO

Ophiocordyceps unilateralis sensu lato infects ants, modifies their behavior, and is found in many countries around the world. One unifying concept of all such parasitic associations is that both the parasite and the host adapt to maximize their fitness and reproductive output. However, little is known about the reproductive life span of this pathogen or about its alternation between asexual and sexual states, even though these two states affect host population dynamics differently. To address these issues, a permanent plot in a tropical rainforest was surveyed over the course of two years to examine the development of O. unilateralis s.l. and the incidence of infection of Polyrhachis and Camponotus ants, which were found to be specifically attacked by this fungus in Thailand. We document here for the first time the life cycle of this pathogen over the long term, which provides fundamental knowledge for the understanding of this fascinating host-parasite interaction.


Assuntos
Formigas/microbiologia , Hypocreales/fisiologia , Animais , Formigas/fisiologia , Interações Hospedeiro-Parasita , Hypocreales/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Plantas/microbiologia , Dinâmica Populacional
9.
Fungal Syst Evol ; 8: 27-37, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35005570

RESUMO

Three new fungal species in the Clavicipitaceae (Hypocreales, Ascomycota) associated with plants were collected in Thailand. Morphological characterisation and phylogenetic analyses based on multi-locus sequences of LSU, RPB1 and TEF1 showed that two species belong to Aciculosporium and Shimizuomyces. Morakotia occupies a unique clade and is proposed as a novel genus in Clavicipitaceae. Shimizuomyces cinereus and Morakotia fusca share the morphological characteristic of having cylindrical to clavate stromata arising from seeds. Aciculosporium siamense produces perithecial plates and occurs on a leaf sheath of an unknown panicoid grass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA