Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Blood ; 143(24): 2544-2558, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38518106

RESUMO

ABSTRACT: Acute hyperhemolysis is a severe life-threatening complication in patients with sickle cell disease (SCD) that may occur during delayed hemolytic transfusion reaction (DHTR), or vaso-occlusive crises associated with multiorgan failure. Here, we developed in vitro and in vivo animal models to mimic endothelial damage during the early phase of hyperhemolysis in SCD. We then used the carbon monoxide (CO)-releasing molecule CORM-401 and examined its effects against endothelial activation, damage, and inflammation inflicted by hemolysates containing red blood cell membrane-derived particles. The in vitro results revealed that CORM-401: (1) prevented the upregulation of relevant proinflammatory and proadhesion markers controlled by the NF-κB enhancer of activated B cells, and (2) abolished the expression of the nuclear factor erythroid-2-related factor 2 (Nrf2) that regulates the inducible antioxidant cell machinery. We also show in SCD mice that CORM-401 protects against hemolysate-induced acute damage of target organs such as the lung, liver, and kidney through modulation of NF-κB proinflammatory and Nrf2 antioxidant pathways. Our data demonstrate the efficacy of CORM-401 as a novel therapeutic agent to counteract hemolysate-induced organ damage during hyperhemolysis in SCD. This approach might be considered as possible preventive treatment in high-risk situations such as patients with SCD with history of DHTR.


Assuntos
Anemia Falciforme , Monóxido de Carbono , Hemólise , Fator 2 Relacionado a NF-E2 , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/complicações , Animais , Camundongos , Monóxido de Carbono/farmacologia , Humanos , Hemólise/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Administração Oral , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL
2.
Am J Hematol ; 95(5): 456-464, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31990387

RESUMO

The complement system is an innate immune defense cascade that can cause tissue damage when inappropriately activated. Evidence for complement over activation has been reported in small cohorts of patients with sickle cell disease (SCD). However, the mechanism governing complement activation in SCD has not been elucidated. Here, we observe that the plasma concentration of sC5b-9, a reliable marker for terminal complement activation, is increased at steady state in 61% of untreated SCD patients. We show that greater complement activation in vitro is promoted by SCD erythrocytes compared to normal ones, although no significant differences were observed in the regulatory proteins CD35, CD55, and CD59 in whole blood. Complement activation is positively correlated with the percentage of dense sickle cells (DRBCs). The expression levels of CD35, CD55, and CD59 are reduced in DRBCs, suggesting inefficient regulation when cell density increases. Moreover, the surface expression of the complement regulator CD46 on granulocytes was inversely correlated with the plasma sC5b-9. We also show increased complement deposition in cultured human endothelial cells incubated with SCD serum, which is diminished by the addition of the heme scavenger hemopexin. Treatment of SCD patients with hydroxyurea produces substantial reductions in complement activation, measured by sC5b-9 concentration and upregulation of CD46, as well as decreased complement activation on RBCs in vitro. In conclusion, complement over activation is a common pathogenic event in SCD that is associated with formation of DRBCs and hemolysis. And, it affects red cells, leukocytes and endothelial cells. This complement over activation is partly alleviated by hydroxyurea therapy.


Assuntos
Anemia Falciforme/terapia , Contagem de Células/métodos , Ativação do Complemento/genética , Hemólise/fisiologia , Hidroxiureia/uso terapêutico , Adolescente , Adulto , Feminino , Humanos , Hidroxiureia/farmacologia , Pessoa de Meia-Idade , Adulto Jovem
3.
Am J Hematol ; 95(11): 1235-1245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32681733

RESUMO

Polymerization of the sickle hemoglobin (HbS) is a key determinant of sickle cell disease (SCD), an inherited blood disorder. Fetal hemoglobin (HbF) is a major modulator of the disease severity by both decreasing HbS intracellular concentration and inhibiting its polymerization. However, heterocellular distribution of HbF is common in SCD. For HbS polymerization inhibition, the hypothesis of an "HbF per red blood cell (HbF/RBC) threshold" requires accurate measurement of HbF in individual RBC. To date, HbF detection methods are limited to a qualitative measurement of RBC populations containing HbF - the F cells, which are variable. We developed an accurate method for HbF quantification in individual RBC. A linear association between mean HbF content and mean RBC fluorescence by flow cytometry, using an anti-Human-HbF antibody, was obtained from non-SCD subjects presenting homogeneous HbF distribution. This correlation was then used to measure HbF/RBC. Hydroxyurea (HU) improves SCD clinical manifestations, mainly through its ability to induce HbF synthesis. The HbF distribution was analyzed in 14 SCD patients before and during HU treatment. A significant decrease in RBC population containing less than 2 pg of HbF/RBC was observed. Therefore, we tested associations for %RBC above different HbF/RBC thresholds and showed a decrease in the pathognomonic vaso-occlusive crisis incidence from the threshold of 4 pg. This quantity was also correlated with the level of sickle RBC after in vitro deoxygenation. This new method allows the comparison of HbF/RBC distributions and could be a useful tool to characterize baseline patients HbF distribution and therapeutic response to HbF inducers.


Assuntos
Anemia Falciforme , Eritrócitos Anormais/metabolismo , Hemoglobina Fetal/metabolismo , Citometria de Fluxo , Hidroxiureia/administração & dosagem , Adulto , Anemia Falciforme/sangue , Anemia Falciforme/tratamento farmacológico , Feminino , Humanos , Masculino
4.
Blood ; 125(24): 3805-14, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25827830

RESUMO

Intravascular hemolysis describes the relocalization of heme and hemoglobin (Hb) from erythrocytes to plasma. We investigated the concept that erythrocyte membrane microparticles (MPs) concentrate cell-free heme in human hemolytic diseases, and that heme-laden MPs have a physiopathological impact. Up to one-third of cell-free heme in plasma from 47 patients with sickle cell disease (SCD) was sequestered in circulating MPs. Erythrocyte vesiculation in vitro produced MPs loaded with heme. In silico analysis predicted that externalized phosphatidylserine (PS) in MPs may associate with and help retain heme at the cell surface. Immunohistology identified Hb-laden MPs adherent to capillary endothelium in kidney biopsies from hyperalbuminuric SCD patients. In addition, heme-laden erythrocyte MPs adhered and transferred heme to cultured endothelial cells, inducing oxidative stress and apoptosis. In transgenic SAD mice, infusion of heme-laden MPs triggered rapid vasoocclusions in kidneys and compromised microvascular dilation ex vivo. These vascular effects were largely blocked by heme-scavenging hemopexin and by the PS antagonist annexin-a5, in vitro and in vivo. Adversely remodeled MPs carrying heme may thus be a source of oxidant stress for the endothelium, linking hemolysis to vascular injury. This pathway might provide new targets for the therapeutic preservation of vascular function in SCD.


Assuntos
Anemia Falciforme/complicações , Micropartículas Derivadas de Células/patologia , Células Endoteliais/patologia , Heme/metabolismo , Doenças Vasculares/etiologia , Anemia Falciforme/sangue , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Animais , Micropartículas Derivadas de Células/metabolismo , Estudos de Coortes , Células Endoteliais/metabolismo , Eritrócitos/metabolismo , Eritrócitos/patologia , Hemólise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Doenças Vasculares/sangue , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
6.
J Am Chem Soc ; 138(36): 11623-32, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27562632

RESUMO

The coffee-ring effect denotes the accumulation of particles at the edge of an evaporating sessile drop pinned on a substrate. Because it can be detected by simple visual inspection, this ubiquitous phenomenon can be envisioned as a robust and cost-effective diagnostic tool. Toward this direction, here we systematically analyze the deposit morphology of drying drops containing polystyrene particles of different surface properties with various proteins (bovine serum albumin (BSA) and different forms of hemoglobin). We show that deposit patterns reveal information on both the adsorption of proteins onto particles and their reorganization following adsorption. By combining pattern analysis with adsorption isotherm and zeta potential measurements, we show that the suppression of the coffee-ring effect and the formation of a disk-shaped pattern is primarily associated with particle neutralization by protein adsorption. However, our findings also suggest that protein reorganization following adsorption can dramatically invert this tendency. Exposure of hydrophobic (respectively charged) residues can lead to disk (respectively ring) deposit morphologies independently of the global particle charge. Surface tension measurements and microscopic observations of the evaporating drops show that the determinant factor of the deposit morphology is the accumulation of particles at the liquid/gas interface during evaporation. This general behavior opens the possibility to probe protein adsorption and reorganization on particles by the analysis of the deposit patterns, the formation of a disk being the robust signature of particles rendered hydrophobic by protein adsorption. We show that this method is sensitive enough to detect a single point mutation in a protein, as demonstrated here by the distinct patterns formed by human native hemoglobin h-HbA and its mutant form h-HbS, which is responsible for sickle cell anemia.


Assuntos
Hemoglobinas/química , Hemoglobinas/genética , Nanopartículas/química , Mutação Puntual , Soroalbumina Bovina/química , Soroalbumina Bovina/genética , Adsorção , Adulto , Animais , Bovinos , Humanos , Modelos Moleculares , Poliestirenos/química , Conformação Proteica
7.
Am J Hematol ; 91(10): 1008-13, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27380930

RESUMO

Production of abnormal hemoglobin (HbS) in sickle-cell disease (SCD) results in its polymerization in deoxygenated conditions and in sickled-RBC formation. Dense RBCs (DRBCs), defined as density >1.11 and characterized by increased rigidity are absent in normal AA subjects, but present at percentages that vary of a patient to another remaining stable throughout adulthood for each patient. Polymerized HbS has reduced affinity for oxygen, demonstrated by the rightward shift of the oxygen-dissociation curve, leading to disturbances in oxygen transport. Ninety-two SCD patients' total RBCs were separated into LightDRBC (LRBC) (d < 1.11 g/mL) and DRBC fractions. Venous blood partial oxygen pressure and RBC-fraction-deoxygenation and -reoxygenation Hb-oxygen-equilibrium curves were determined. All patients took a 6-minute walking test (6MWT); 10 had results before and after >6 months on hydroxyurea. 6MWT time with SpO2 < 88% (TSpO2 < 88) assessed the physiological impact of exertion. Elevated mean corpuscular hemoglobin (Hb) concentrations, decreased %HbF, and 2,3-bisphosphoglycerates in DRBCs modulated Hb-oxygen affinity. Deoxygenation and reoxygenation Hb-oxygen equilibrium curves differed between normal Hb AA and SS RBCs and between LRBCs and DRBCs, with rightward shifts confirming HbS-polymerization's role in affinity loss. In bivariate analyses, 50% Hb saturation correlated positively with %DRBCs (P < 0.0001, r(2) = 0.34) and negatively with %HbF (P < 0.0001, r(2) = 0.25). The higher the %DRBCs, the longer the TSpO2 88 (P = 0.04). Hydroxyurea was associated with significantly shorter TSpO2 < 88 (P = 0.01). We report that the %DRBCs directly affects SCD patients' SpO2 during exertion; hydroxyurea improves oxygen affinity and lowers the %DRBCs. Am. J. Hematol. 91:1008-1013, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Anemia Falciforme/sangue , Eritrócitos/metabolismo , Oxigênio/sangue , 2,3-Difosfoglicerato , Adulto , Idoso , Idoso de 80 Anos ou mais , Anemia Falciforme/fisiopatologia , Eritrócitos Anormais/metabolismo , Eritrócitos Anormais/patologia , Feminino , Hemoglobina Fetal , Hemoglobina Falciforme , Humanos , Hidroxiureia/farmacologia , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Esforço Físico , Polimerização , Estudos Prospectivos , Adulto Jovem
9.
Biochim Biophys Acta ; 1840(1): 277-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24060751

RESUMO

BACKGROUND: AHSP is an erythroid molecular chaperone of the α-hemoglobin chains (α-Hb). Upon AHSP binding, native ferric α-Hb undergoes an unprecedented structural rearrangement at the heme site giving rise to a 6th coordination bond with His(E7). METHODS: Recombinant AHSP, WT α-Hb:AHSP and α-Hb(HE7Q):AHSP complexes were expressed in Escherichia coli. Thermal denaturation curves were measured by circular dichroism for the isolated α-Hb and bound to AHSP. Kinetics of ligand binding and redox reactions of α-Hb bound to AHSP as well as α-Hb release from the α-Hb:AHSP complex were measured by time-resolved absorption spectroscopy. RESULTS: AHSP binding to α-Hb is kinetically controlled to prevail over direct binding with ß-chains and is also thermodynamically controlled by the α-Hb redox state and not the liganded state of the ferrous α-Hb. The dramatic instability of isolated ferric α-Hb is greatly decreased upon AHSP binding. Removing the bis-histidyl hexacoordination in α-HbH58(E7)Q:AHSP complex reduces the stabilizing effect of AHSP binding. Once the ferric α-Hb is bound to AHSP, the globin can be more easily reduced by several chemical and enzymatic systems compared to α-Hb within the Hb-tetramer. CONCLUSION: α-Hb reduction could trigger its release from AHSP toward its final Hb ß-chain partner producing functional ferrous Hb-tetramers. This work indicates a preferred kinetic pathway for Hb-synthesis. GENERAL SIGNIFICANCE: The cellular redox balance in Hb-synthesis should be considered as important as the relative proportional synthesis of both Hb-subunits and their heme cofactor. The in vivo role of AHSP is discussed in the context of the molecular disorders observed in thalassemia.


Assuntos
Proteínas Sanguíneas/metabolismo , Heme/metabolismo , Hemoglobina A/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Monóxido de Carbono/metabolismo , Dicroísmo Circular , Heme/química , Hemoglobina A/química , Humanos , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagênese Sítio-Dirigida , Oxirredução , Oxigênio/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Biol Chem ; 288(10): 6957-67, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23288852

RESUMO

Neuroglobins, previously thought to be restricted to vertebrate neurons, were detected in the brain of a photosymbiotic acoel, Symsagittifera roscoffensis, and in neurosensory cells of the jellyfish Clytia hemisphaerica. For the neuroglobin of S. roscoffensis, a member of a lineage that originated either at the base of the bilateria or of the deuterostome clade, we report the ligand binding properties, crystal structure at 2.3 Å, and brain immunocytochemical pattern. We also describe in situ hybridizations of two neuroglobins specifically expressed in differentiating nematocytes (neurosensory cells) and in statocytes (ciliated mechanosensory cells) of C. hemisphaerica, a member of the early branching animal phylum cnidaria. In silico searches using these neuroglobins as queries revealed the presence of previously unidentified neuroglobin-like sequences in most metazoan lineages. Because neural systems are almost ubiquitous in metazoa, the constitutive expression of neuroglobin-like proteins strongly supports the notion of an intimate association of neuroglobins with the evolution of animal neural systems and hints at the preservation of a vitally important function. Neuroglobins were probably recruited in the first protoneurons in early metazoans from globin precursors. Neuroglobins were identified in choanoflagellates, sponges, and placozoans and were conserved during nervous system evolution. Because the origin of neuroglobins predates the other metazoan globins, it is likely that neuroglobin gene duplication followed by co-option and subfunctionalization led to the emergence of globin families in protostomes and deuterostomes (i.e. convergent evolution).


Assuntos
Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/metabolismo , Precursores de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Evolução Molecular , Perfilação da Expressão Gênica , Variação Genética , Globinas/química , Globinas/genética , Hidrozoários/genética , Hidrozoários/metabolismo , Hibridização In Situ , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/citologia , Neuroglobina , Oxigênio/química , Oxigênio/metabolismo , Filogenia , Platelmintos/genética , Platelmintos/metabolismo , Ligação Proteica , Precursores de Proteínas/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA