Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39274733

RESUMO

Non-stoichiometric permingeatites Cu3+mSbSe4 (-0.04 ≤ m ≤ -0.02) were synthesized, and their thermoelectric properties were examined depending on the Cu deficiency. Phase analysis by X-ray diffraction revealed no detection of secondary phases. Due to Cu deficiency, the lattice parameters of tetragonal permingeatite decreased compared to the stoichiometric permingeatite, resulting in a = 0.5654-0.5654 nm and c = 1.1253-1.1254 nm, with a decrease in the c/a ratio in the range of 1.9901-1.9903. Electrical conductivity exhibited typical semiconductor behavior of increasing conductivity with temperature, and above 423 K, the electrical conductivity of all samples exceeded that of stoichiometric permingeatite; Cu2.96SbSe4 exhibited a maximum of 9.8 × 103 Sm-1 at 623 K. The Seebeck coefficient decreased due to Cu deficiency, showing p-type semiconductor behavior similar to stoichiometric permingeatite, with majority carriers being holes. Thermal conductivity showed negative temperature dependence, and both electronic and lattice thermal conductivities increased due to Cu deficiency. Despite the decrease in the Seebeck coefficient due to Cu deficiency, the electrical conductivity increased, resulting in an increase in the power factor (especially a great increase at high temperatures), with Cu2.97SbSe4 exhibiting the highest value of 0.72 mWm-1K-2 at 573 K. As the carrier concentration increased due to Cu deficiency, the thermal conductivity increased, but the increase in power factor was significant, with Cu2.98SbSe4 recording a maximum dimensionless figure-of-merit of 0.50 at 523 K. This value was approximately 28% higher than that (0.39) of stoichiometric Cu3SbSe4.

2.
ACS Omega ; 8(35): 31801-31810, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692235

RESUMO

For the widespread adoption of polymer electrolyte membrane fuel cells, it is compelling to investigate the influence of the Pt nanoparticle shapes on the electrocatalytic activity. In this study, a catalyst layer was modeled by incorporating four types of Pt nanoparticles: tetrahedron, cube, octahedron, and truncated octahedron, to investigate the relationship between the shapes of the nanoparticles and their impact on the oxygen transport properties using molecular dynamics simulations. The results of our study reveal that the free volume, which has a substantial impact on the oxygen transport properties, exhibited higher values in the sequence of the tetrahedron, cube, octahedron, and truncated octahedron model. The difference in free volume following the formation of less dense ionomers was also related to the surface adsorption of Pt nanoparticles. Consequently, this led to an improved facilitation of oxygen transport. To clarify the dependence of the oxygen transport on the shape of the Pt nanoparticles in detail, we analyzed the structural properties of different Pt shapes by dividing the Pt nanoparticle regions into corners, edges, and facets. Examination of the structural properties showed that the structure of the ionomer depended not only on the shape of the Pt nanoparticles but also on the number of corners and edges in the upper and side regions of the Pt nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA