Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 389, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563545

RESUMO

BACKGROUND: Anthracnose is a fungal disease caused by Colletotrichum spp. that has a significant impact on worldwide pepper production. Colletotrichum scovillei is the most common pathogenic anthracnose-causing species in the Republic of Korea. RESULTS: The resistances of 197 pepper (Capsicum chinense) accessions deposited in Korea's National Agrobiodiversity Center were evaluated for their response against the virulent pathogens Colletotrichum acutatum isolate 'KSCa-1' and C. scovillei isolate 'Hana') in the field and in vitro methods for three consecutive years (2018 to 2020). The severity of the disease was recorded and compared between inoculation methods. Six phenotypically resistant pepper accessions were selected based on three years of disease data. All of the selected resistant pepper accessions outperformed the control resistant pepper in terms of resistance (PI 594,137). A genome-wide association study (GWAS) was carried out to identify single nucleotide polymorphisms (SNPs) associated with anthracnose resistance. An association analysis was performed using 53,518 SNPs and the disease score of the 2020 field and in vitro experiment results. Both field and in vitro experiments revealed 25 and 32 significantly associated SNPs, respectively. These SNPs were found on all chromosomes except Ch06 and Ch07 in the field experiment, whereas in the in vitro experiment they were found on all chromosomes except Ch04 and Ch11. CONCLUSION: In this study, six resistant C. chinense accessions were selected. Additionally, in this study, significantly associated SNPs were found in a gene that codes for a protein kinase receptor, such as serine/threonine-protein kinase, and other genes that are known to be involved in disease resistance. This may strengthen the role of these genes in the development of anthracnose resistance in Capsicum spp. As a result, the SNPs discovered to be strongly linked in this study can be used to identify a potential marker for selecting pepper material resistant to anthracnose, which will assist in the development of resistant varieties.


Assuntos
Capsicum , Colletotrichum , Estudo de Associação Genômica Ampla , Capsicum/genética , Capsicum/microbiologia , Resistência à Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Quinases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Hortic Res ; 9: uhac204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467271

RESUMO

Capsaicinoids provide chili peppers (Capsicum spp.) with their characteristic pungency. Several structural and transcription factor genes are known to control capsaicinoid contents in pepper. However, many other genes also regulating capsaicinoid contents remain unknown, making it difficult to develop pepper cultivars with different levels of capsaicinoids. Genomic selection (GS) uses genome-wide random markers (including many in undiscovered genes) for a trait to improve selection efficiency. In this study, we predicted the capsaicinoid contents of pepper breeding lines using several GS models trained with genotypic and phenotypic data from a training population. We used a core collection of 351 Capsicum accessions and 96 breeding lines as training and testing populations, respectively. To obtain the optimal number of single nucleotide polymorphism (SNP) markers for GS, we tested various numbers of genome-wide SNP markers based on linkage disequilibrium. We obtained the highest mean prediction accuracy (0.550) for different models using 3294 SNP markers. Using this marker set, we conducted GWAS and selected 25 markers that were associated with capsaicinoid biosynthesis genes and quantitative trait loci for capsaicinoid contents. Finally, to develop more accurate prediction models, we obtained SNP markers from GWAS as fixed-effect markers for GS, where 3294 genome-wide SNPs were employed. When four to five fixed-effect markers from GWAS were used as fixed effects, the RKHS and RR-BLUP models showed accuracies of 0.696 and 0.689, respectively. Our results lay the foundation for developing pepper cultivars with various capsaicinoid levels using GS for capsaicinoid contents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA