Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433561

RESUMO

Thermal imaging plays a vital role in structural health monitoring of various materials and provides insight into the defect present due to aging, deterioration, and fault during construction. This study investigated the effectiveness of spatial filters during pre-processing of thermal images and a correlation technique in post-processing, as well as exploited its application in non-destructive testing and evaluation of defects in steel structures. Two linear filters (i.e., Gaussian and Window Averaging) and a non-linear filter (i.e., Median) were implemented during pre-processing of a pulsed thermography image sequence. The effectiveness of implemented filters was then assessed using signal to noise ratio as a quality metric. The result of pre-processing revealed that each implemented filter is capable of reducing impulse noise and producing high-quality images; additionally, when comparing the signal to noise ratio, the Gaussian filter dominated both Window Averaging and Median filters. Defect size was determined using a correlation technique on a sequence of pulsed thermography images that had been pre-processed with a Gaussian filter. Finally, it is concluded that the correlation technique could be applied to the fast measurement of defect size, even though the accuracy may depend on the detection limit of thermography and defect size to depth ratio.


Assuntos
Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Distribuição Normal
2.
J Nanosci Nanotechnol ; 12(6): 4564-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22905501

RESUMO

We present a recent experimental study on the application of nanoporous silicon (np-Si) to an optical vapor sensor. We fabricated the micro-system based on a glass-nanoporous silicon layer on a p(+)-type silicon wafer. To check the selectivity and sensitivity of the np-Si layer to organic vapors, we prepared three types of np-Si layer samples--a single layer, distributed Bragg reflector (DBR) layer, and microcavity layer--and investigated its reflectance spectra upon exposure to different concentrations of various organic vapors. When the np-Si layer samples were exposed to the organic vapors, a red-shift occurred in the reflectance spectrum, and we determined that this red-shift can be attributed to the changes in the refractive index induced by the capillary condensation of the organic vapor within the pores of the np-Si layer. The np-Si layer samples showed excellent sensing ability to different types and concentrations of organic vapors. After removing the organic vapors, the reflectance spectrum immediately returned to its original state.


Assuntos
Gases/análise , Vidro/química , Nanoestruturas/química , Compostos Orgânicos/análise , Refratometria/instrumentação , Silício/química , Solventes/análise , Colorimetria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Porosidade , Transdutores
3.
J Nanosci Nanotechnol ; 12(2): 966-70, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629880

RESUMO

We investigated the critical conditions to realize reliable and nano-engineered templates for surface-plasmon enhanced Raman scattering (SERS). Ultra-sensitive SERSs of thymine oligonucleotides were successfully realized on the template of Au nanoparticle arrays which were prepared by the combination of electron-beam lithography and post-chemical modification techniques. Drastic enhancement of Raman signal from the thymine oligonucleotides was only observed on the optimized templates, where the tuning of the plasmon resonance condition and the formation of the hot spots were both critical. Our results suggest that the artificial generation of reproducible and controlled hot spots can be achieved by our approach.

4.
ACS Omega ; 5(14): 7903-7909, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309699

RESUMO

Various postsynthesis processes for transition metal dichalcogenides have been attempted to control the layer number and defect concentration, on which electrical and optical properties strongly depend. In this work, we monitored changes in the photoluminescence (PL) of molybdenum disulfide (MoS2) until laser irradiation generated defects on the sample flake and completely etched it away. Higher laser power was required to etch bilayer MoS2 compared to monolayer MoS2. When the laser power was 270 µW with a full width at half-maximum of 1.8 µm on bilayer MoS2, the change in PL intensity over time showed a double maximum during laser irradiation due to a layer-by-layer etching of the flake. When the laser power was increased to 405 µW, however, both layers of bilayer MoS2 were etched all at once, which resulted in a single maximum in the change of PL intensity over time, as in the case of monolayer MoS2. The dependence of the etching pattern for bilayer MoS2 on laser power was also reflected in position changes of both exciton and trion PL peaks. The subtle changes in the PL spectra of MoS2 as a result of laser irradiation found here are discussed in terms of PL quantum efficiency, conversion between trions and excitons, mean interatomic spacing, and the screening of Coulomb interaction.

5.
RSC Adv ; 8(23): 12900-12906, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35541259

RESUMO

We investigated the homogeneity and tolerance to heat of monolayer MoS2 using photoluminescence (PL) spectroscopy. For MoS2 on SiO2, the PL spectra of the basal plane differ from those of the edge, but MoS2 on hexagonal boron nitride (h-BN) was electron-depleted with a homogeneous PL spectra over the entire area. Annealing at 450 °C rendered MoS2 on SiO2 homogeneously electron-depleted over the entire area by creating numerous defects; moreover, annealing at 550 °C and subsequent laser irradiation on the MoS2 monolayer caused a loss of its inherent crystal structure. On the other hand, monolayer MoS2 on h-BN was preserved up to 550 °C with its PL spectra not much changed compared with MoS2 on SiO2. We performed an experiment to qualitatively compare the binding energies between various layers, and discuss the tolerance of monolayer MoS2 to heat on the basis of interlayer/interfacial binding energy.

6.
Nanoscale ; 9(18): 6041-6047, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28443903

RESUMO

Graphene bubbles are often formed when graphene and other layered two-dimensional materials are vertically stacked as van der Waals heterostructures. Here, we investigate how graphene bubbles and their related disorder impact the quantum transport behavior of graphene in the absence and presence of external magnetic fields. By combining experimental observations and numerical simulations, we find that the disorder induced by the graphene bubbles is mainly from p-type dopants and the charge transport in pristine graphene can be severely influenced by the presence of bubbles via long- and short-range scattering even with a small bubble-coverage of 2% and below. Upon bubble density increase, we observe an overall decrease in carrier mobility, and the appearance of a second Dirac point on the electron carrier side. At high magnetic fields, the disorder from graphene bubbles primarily impacts the quantization of the lowest Landau level, resulting in quantum Hall features associated with a new Dirac cone at high charge carrier density.

7.
Nanoscale ; 9(47): 18644-18650, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29075708

RESUMO

van der Waals (vdW) heterostructures with two-dimensional (2D) crystals such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDCs) allow us to demonstrate atomically thin field-effect transistors (FETs), photodetectors (PDs) and photovoltaic devices capable of higher performance and greater stability levels than conventional devices. Although there have been studies of gas molecule sensing with 2D crystal channels, vdW heterostructures based on 2D crystals have not been employed thus far. Here, utilizing graphene/WS2/graphene (G/WS2/G) vdW heterostructure tunnel FETs, we demonstrate the rectification behavior of the sensitivity signal by tuning the WS2 potential barriers as a function of the gas molecule concentration and devise a fingerprint map of the sensitivity variation corresponding to an individual ratio of two different molecules in a gas mixture. Because the separation of different gas molecule concentrations from gas mixtures is in high demand in the gas-sensing research field, this result will greatly assist in the progress on selective gas sensing.

8.
Sci Rep ; 5: 16642, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26563740

RESUMO

Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

9.
J Nanosci Nanotechnol ; 14(11): 8382-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958532

RESUMO

We have carried out surface-plasmon enhanced Raman spectroscopy (SERS) on 30 nm-thick GaN samples grown at various temperatures, in order to investigate the properties of ultra thin GaN films on sapphire. We found that the properties, such as the strain and the free-carrier density of the thin layers, were sensitively affected by the growth temperatures. Our results show that SERS, by selectively enhancing the Raman signal near the surface, can be a very useful technique to investigate the optical properties of ultra-thin GaN films and their initial growth mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA