Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 167(5): 1296-1309.e10, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27839867

RESUMO

The ability of cells to count and remember their divisions could underlie many alterations that occur during development, aging, and disease. We tracked the cumulative divisional history of slow-cycling hematopoietic stem cells (HSCs) throughout adult life. This revealed a fraction of rarely dividing HSCs that contained all the long-term HSC (LT-HSC) activity within the aging HSC compartment. During adult life, this population asynchronously completes four traceable symmetric self-renewal divisions to expand its size before entering a state of dormancy. We show that the mechanism of expansion involves progressively lengthening periods between cell divisions, with long-term regenerative potential lost upon a fifth division. Our data also show that age-related phenotypic changes within the HSC compartment are divisional history dependent. These results suggest that HSCs accumulate discrete memory stages over their divisional history and provide evidence for the role of cellular memory in HSC aging.


Assuntos
Envelhecimento/patologia , Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Transplante de Medula Óssea , Ciclo Celular , Divisão Celular , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína IIb da Membrana de Plaquetas/metabolismo
2.
Cell ; 161(2): 240-54, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25860607

RESUMO

In vitro modeling of human disease has recently become feasible with induced pluripotent stem cell (iPSC) technology. Here, we established patient-derived iPSCs from a Li-Fraumeni syndrome (LFS) family and investigated the role of mutant p53 in the development of osteosarcoma (OS). LFS iPSC-derived osteoblasts (OBs) recapitulated OS features including defective osteoblastic differentiation as well as tumorigenic ability. Systematic analyses revealed that the expression of genes enriched in LFS-derived OBs strongly correlated with decreased time to tumor recurrence and poor patient survival. Furthermore, LFS OBs exhibited impaired upregulation of the imprinted gene H19 during osteogenesis. Restoration of H19 expression in LFS OBs facilitated osteoblastic differentiation and repressed tumorigenic potential. By integrating human imprinted gene network (IGN) into functional genomic analyses, we found that H19 mediates suppression of LFS-associated OS through the IGN component DECORIN (DCN). In summary, these findings demonstrate the feasibility of studying inherited human cancer syndromes with iPSCs.


Assuntos
Redes Reguladoras de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Síndrome de Li-Fraumeni/complicações , Osteossarcoma/etiologia , Adolescente , Adulto , Animais , Criança , Decorina/metabolismo , Feminino , Humanos , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Biológicos , Transplante de Neoplasias , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/metabolismo , Transplante Heterólogo , Proteína Supressora de Tumor p53/metabolismo
3.
Asian-Australas J Anim Sci ; 26(12): 1680-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25049758

RESUMO

Many different approaches have been developed to improve the efficiency of animal cloning by somatic cell nuclear transfer (SCNT), one of which is to modify histone acetylation levels using histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA). In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from SCNT. We found that TSA treatment (50 nM) for 24 h following oocyte activation improved blastocyst formation rates (to 22.0%) compared with 8.9% in the non-treatment group and total cell number of the blastocysts for determining embryo quality also increased significantly (88.9→114.4). Changes in histone acetylation levels as a result of TSA treatment were examined using indirect immunofluorescence and confocal microscopy scanning. Results showed that the histone acetylation level in TSA-treated embryos was higher than that in controls at both acetylated histone H3 lysine 9 (AcH3K9) and acetylated histone H4 lysine 12 (AcH4K12). Next, we compared the expression patterns of seven genes (OCT4, ID1; the pluripotent genes, H19, NNAT, PEG1; the imprinting genes, cytokeratin 8 and 18; the trophoblast marker genes). The SCNT blastocysts both with and without TSA treatment showed lower levels of OCT4, ID1, cytokeratin 8 and 18 than those of the in vivo blastocysts. In the case of the imprinting genes H19 and NNAT, except PEG1, the SCNT blastocysts both with and without TSA treatment showed higher levels than those of the in vivo blastocysts. Although the gene expression patterns between cloned blastocysts and their in vivo counterparts were different regardless of TSA treatment, it appears that several genes in NT blastocysts after TSA treatment showed a slight tendency toward expression patterns of in vivo blastocysts. Our results suggest that TSA treatment may improve preimplantation porcine embryo development following SCNT.

4.
J Med Chem ; 66(23): 16168-16186, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38019706

RESUMO

As a core chromatin-regulatory scaffolding protein, WDR5 mediates numerous protein-protein interactions (PPIs) with other partner oncoproteins. However, small-molecule inhibitors that block these PPIs exert limited cell-killing effects. Here, we report structure-activity relationship studies in pancreatic ductal adenocarcinoma (PDAC) cells that led to the discovery of several WDR5 proteolysis-targeting chimer (PROTAC) degraders, including 11 (MS132), a highly potent and selective von Hippel-Lindau (VHL)-recruiting WDR5 degrader, which displayed positive binding cooperativity between WDR5 and VHL, effectively inhibited proliferation in PDAC cells, and was bioavailable in mice and 25, a cereblon (CRBN)-recruiting WDR5 degrader, which selectively degraded WDR5 over the CRBN neo-substrate IKZF1. Furthermore, by conducting site-directed mutagenesis studies, we determined that WDR5 K296, but not K32, was involved in the PROTAC-induced WDR5 degradation. Collectively, these studies resulted in a highly effective WDR5 degrader, which could be a potential therapeutic for pancreatic cancer and several potentially useful tool compounds.


Assuntos
Neoplasias Pancreáticas , Quimera de Direcionamento de Proteólise , Animais , Camundongos , Proteólise , Relação Estrutura-Atividade , Neoplasias Pancreáticas/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo
5.
J Reprod Dev ; 58(1): 132-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22134064

RESUMO

To artificially activate embryos in somatic cell nuclear transfer (SCNT), chemical treatment with ionomycin has been used to induce transient levels of Ca(2+) and initiate reprogramming of embryos. Ca(2+) oscillation occurs naturally several times after fertilization (several times with 15- to 30-min intervals). This indicates how essential additional Ca(2+) influx is for successful reprogramming of embryos. Hence, in this report, the experimental design was aimed at improving the developmental efficiency of cloned embryos by repetitive Ca(2+) transients rather than the commonly used ionomycin treatment (4 min). To determine optimal Ca(2+) inflow conditions, we performed three different repetitive ionomycin (10 µM) treatments in reconstructed embryos: Group 1 (4-min ionomycin treatment, once), Group 2 (30-sec treatment, 4 times, 15-min intervals) and Group 3 (1-min treatment, 4 times, 15-min intervals). Pronuclear formation rates were checked to assess the effects of repetitive ionomycin treatment on reprogramming of cloned embryos. Cleavage rates were investigated on day 2, and the formation rates of blastocysts (BLs) were examined on day 7 to demonstrate the positive effect of repeated ionomycin treatment. In Group 3, a significant increase in BL formation was observed [47/200 (23.50%), 44/197 (22.33%) and 69/195 (35.38%) in Groups 1, 2 and 3, respectively]. Culturing embryos with different ionomycin treatments caused no significant difference among the groups in terms of the total cell number of BLs (164.3, 158.5 and 145.1, respectively). Additionally, expression of the anti-apoptotic Bcl-2 gene and MnSOD increased significantly in Group 3, whereas the expression of the pro-apoptotic Bax decreased statistically. In conclusion, the present study demonstrated that repeated ionomycin treatment is an improved activation method that can increase the developmental competence of SCNT embryos by decreasing the incidence of apoptosis.


Assuntos
Ionóforos de Cálcio/farmacologia , Embrião de Mamíferos/efeitos dos fármacos , Ionomicina/farmacologia , Técnicas de Transferência Nuclear/veterinária , Animais , Bovinos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Superóxido Dismutase/biossíntese , Proteína X Associada a bcl-2/biossíntese
6.
Sci Transl Med ; 13(613): eabj1578, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586829

RESUMO

Interactions between WD40 repeat domain protein 5 (WDR5) and its various partners such as mixed lineage leukemia (MLL) and c-MYC are essential for sustaining oncogenesis in human cancers. However, inhibitors that block protein-protein interactions (PPIs) between WDR5 and its binding partners exhibit modest cancer cell killing effects and lack in vivo efficacy. Here, we present pharmacological degradation of WDR5 as a promising therapeutic strategy for treating WDR5-dependent tumors and report two high-resolution crystal structures of WDR5-degrader-E3 ligase ternary complexes. We identified an effective WDR5 degrader via structure-based design and demonstrated its in vitro and in vivo antitumor activities. On the basis of the crystal structure of an initial WDR5 degrader in complex with WDR5 and the E3 ligase von Hippel­Lindau (VHL), we designed a WDR5 degrader, MS67, and demonstrated the high cooperativity of MS67 binding to WDR5 and VHL by another ternary complex structure and biophysical characterization. MS67 potently and selectively depleted WDR5 and was more effective than WDR5 PPI inhibitors in suppressing transcription of WDR5-regulated genes, decreasing the chromatin-bound fraction of MLL complex components and c-MYC, and inhibiting the proliferation of cancer cells. In addition, MS67 suppressed malignant growth of MLL-rearranged acute myeloid leukemia patient cells in vitro and in vivo and was well tolerated in vivo. Collectively, our results demonstrate that structure-based design can be an effective strategy to identify highly active degraders and suggest that pharmacological degradation of WDR5 might be a promising treatment for WDR5-dependent cancers.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Animais , Histona-Lisina N-Metiltransferase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos
7.
J Vet Med Sci ; 72(3): 333-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19996555

RESUMO

Relaxin, a member of the insulin superfamily, has diverse functions in both reproductive and nonreproductive tissues. The aim of the present study was to evaluate the effects of recombinant relaxin on the in vitro maturation of porcine oocytes and their subsequent embryonic development following in vitro fertilization. Three concentrations of relaxin (1, 10, and 100 ng/ml) were used in the in vitro maturation (IVM) medium [TCM supplemented with 10% (v/v) porcine follicular fluid, 10 ng/ml of epidermal growth factor, 4 IU/ml of pregnant mare serum gonadotropin, and (only for the first 22 hr) 4 IU/ml of human chorionic gonadotropin]. Relaxin was used during the entire IVM period. Nuclear maturation of oocytes was examined under ultraviolet light following staining with bisbenzimide (Hoechst 33342) for 5 min and mounted on a glass slide. The glutathione (GSH) content in oocytes, an important indicator of cytoplasmic maturity, was measured using a micro-glutathione assay. Cryopreserved boar semen was used for in vitro fertilization. Embryos were cultured in modified NCSU-23 medium supplemented with 0.5 mM pyruvate and 5 mM lactate. Although nuclear maturation of oocytes did not vary, the GSH content in oocytes was significantly higher when cultured with 1 ng/ml (7.9 pmol/oocyte) and 10 ng/ml (8.47 pmol/oocyte) compared to a control group. However, no additional beneficial effect was observed when 100 ng/ml of relaxin was added to the IVM medium. A significantly higher rate of blastocyst formation was observed with 10 ng of relaxin (32.4%) compared to the control (14.4%) or 100 ng of relaxin (21.4%). No difference between 1 ng and 10 ng was observed in terms of the blastocyst production rate. The inner cell mass cell numbers in relaxin-treated groups were significantly higher than control, and trophectoderm cell number was the highest in the 10 ng relaxin group. Relaxin (10 ng/ml) can be supplemented in IVM medium to support the maturation of porcine oocytes.


Assuntos
Oócitos/fisiologia , Relaxina/farmacologia , Matadouros , Animais , Gonadotropina Coriônica/farmacologia , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Fator de Crescimento Epidérmico/farmacologia , Feminino , Fertilização in vitro/métodos , Líquido Folicular/fisiologia , Gonadotropinas Equinas/farmacologia , Humanos , Oócitos/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/fisiologia , Gravidez , Proteínas Recombinantes/farmacologia , Suínos
8.
FEBS Lett ; 593(23): 3266-3287, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31557312

RESUMO

Transcription factor (TF)-based reprogramming of somatic tissues holds great promise for regenerative medicine. Previously, we demonstrated that the TFs GATA2, GFI1B, and FOS convert mouse and human fibroblasts to hemogenic endothelial-like precursors that generate hematopoietic stem progenitor (HSPC)-like cells over time. This conversion is lacking in robustness both in yield and biological function. Herein, we show that inclusion of GFI1 to the reprogramming cocktail significantly expands the HSPC-like population. AFT024 coculture imparts functional potential to these cells and allows quantification of stem cell frequency. Altogether, we demonstrate an improved human hemogenic induction protocol that could provide a valuable human in vitro model of hematopoiesis for disease modeling and a platform for cell-based therapeutics. DATABASE: Gene expression data are available in the Gene Expression Omnibus (GEO) database under the accession number GSE130361.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Técnicas de Cocultura/métodos , Fibroblastos/citologia , Fibroblastos/metabolismo , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hemangioblastos/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
9.
Mol Reprod Dev ; 75(7): 1127-35, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18324672

RESUMO

In the present study, we investigated the effect of melatonin on the preimplantation development of porcine parthenogenetic and somatic cell nuclear transfer (SCNT) embryos. Parthenogenetic embryos were cultured in mNCSU-23 supplemented with various concentrations of melatonin for 7 days. The results revealed that 100 pM was the optimal concentration, which resulted in significantly increased cleavage and blastocyst formation rates. Additionally, 100 pM melatonin provided the highest increase in total cell number of blastocysts. Therefore, the subsequent experiments were performed with 100 pM melatonin. ROS level in 2-8 cell stage embryos in the presence or absence of melatonin was evaluated. Embryos cultured with melatonin showed significantly decreased ROS. Blastocysts cultured with melatonin for 7 days were analyzed by the TUNEL assay. It was observed that melatonin not only increased (P < 0.05) the total cell number but also decreased (P < 0.05) the rate of apoptotic nuclei. Blastocysts cultured with melatonin were assessed for the expression of apoptosis-related genes Bcl-xl and Bax, and of pluripotency marker gene Oct-4 by real-time quantitative PCR. Analysis of data showed that the expression of Bcl-xl was higher (1.7-fold) compared to the control while the expression of Bax was significantly decreased relative to the control (0.7-fold) (P < 0.05). Moreover, the expression of Oct-4 was 1.7-fold higher than the control. These results indicated that melatonin had beneficial effects on the development of porcine parthenogenetic embryos. Based on the findings of parthenogenetic embryos, we investigated the effect of melatonin on the development of porcine SCNT embryos. The results also demonstrated increased cleavage and blastocyst formation rates, and the total cell numbers in blastocysts were significantly higher when the embryos were cultured with melatonin. Therefore, these data suggested that melatonin may have important implications for improving porcine preimplantation SCNT embryo development.


Assuntos
Apoptose/efeitos dos fármacos , Blastocisto/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Melatonina/farmacologia , Partenogênese/fisiologia , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Feminino , Marcação In Situ das Extremidades Cortadas , Técnicas de Transferência Nuclear , Partenogênese/efeitos dos fármacos , Reação em Cadeia da Polimerase , Gravidez , Suínos
10.
Anim Reprod Sci ; 105(3-4): 438-50, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18276088

RESUMO

The restricted supply of oocytes in the domestic dog limits the development of reproductive biotechnologies in this species. Inter-species somatic cell nuclear transfer could be an alternative for cloning animals whose oocytes are difficult to obtain. In this study, the possibility of cloning dog embryos using pig oocytes was investigated by evaluating nuclear remodeling. Chromatin remodeling, assessed by premature chromosome condensation, pseudo-pronuclei formation, DNA methylation and histone acetylation, along with the developmental ability was compared between intra- and inter-species cloned embryos. The incidence of premature chromosome condensation was significantly higher in intra-species cloned embryos relative to inter-species cloned embryos (87.2% vs. 61.7%; P<0.05), but comparable pseudo-pronuclei formation was observed in both (85.3% vs. 75.8%). None of the inter-species cloned embryos developed beyond the 8-cell stage while 18.3% of intra-species cloned embryos developed to the blastocyst stage. The relative level of both DNA methylation and histone acetylation was similar between intra- and inter-species cloned embryos at all times examined. These results suggest that although partial chromatin remodeling occurs, further investigation is needed to be able to use pig oocytes as recipient oocytes in dog cloning.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Clonagem de Organismos/veterinária , Cães/embriologia , Desenvolvimento Embrionário/fisiologia , Histonas/metabolismo , Oócitos/fisiologia , Suínos/fisiologia , Acetilação , Animais , Núcleo Celular/genética , Núcleo Celular/fisiologia , Clonagem de Organismos/métodos , Metilação de DNA , Feminino , Imuno-Histoquímica/veterinária , Cariotipagem/veterinária , Técnicas de Transferência Nuclear/veterinária
11.
Stem Cells Dev ; 23(22): 2673-86, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25075441

RESUMO

Patient-specific induced pluripotent stem cells (iPSCs) are considered a versatile resource in the field of biomedicine. As iPSCs are generated on an individual basis, iPSCs may be the optimal cellular material to use for disease modeling, drug discovery, and the development of patient-specific cellular therapies. Recently, to gain an in-depth understanding of human pathologies, patient-specific iPSCs have been used to model human diseases with some iPSC-derived cells recapitulating pathological phenotypes in vitro. However, complex multigenic diseases generally have not resulted in concise conclusions regarding the underlying mechanisms of disease, in large part due to genetic variations between disease-state and control iPSCs. To circumvent this, the use of genomic editing tools to generate perfect isogenic controls is gaining momentum. To date, DNA binding domain-based zinc finger nucleases and transcription activator-like effector nucleases have been utilized to create genetically defined conditions in patient-specific iPSCs, with some examples leading to the successful identification of novel mechanisms of disease. As the feasibility and utility of genomic editing tools in iPSCs improve, along with the introduction of the clustered regularly interspaced short palindromic repeat system, understanding the features and limitations of genomic editing tools and their applications to iPSC technology is critical to expending the field of human disease modeling.


Assuntos
Engenharia Genética/métodos , Fenômenos Genéticos/genética , Genoma Humano/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos
12.
Cloning Stem Cells ; 11(1): 123-30, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19226214

RESUMO

The present study was undertaken to evaluate two activation methods for somatic cell nuclear transfer (SCNT), namely, fusion and simultaneous activation (FSA, fusion medium contains calcium), versus fusion followed by chemical activation (F+CA, fusion medium does not contain calcium), and to evaluate the effects of parity of recipient dogs on the success of SCNT. Oocytes retrieved from outbred dogs were reconstructed with adult somatic cells collected from an 11-year-old female dog named Missy. In the FSA method, oocytes were fused and activated at the same time using two DC pulses of 1.75 kV/cm for 15 microsec. In the F+CA method, oocytes were fused with two DC pulses of 1.75 kV/cm for 15 microsec, and then activated 1 h after fusion by 10 microM calcium ionophore for 4 m and cultured for 4 h in 1.9 mM 6-dimethylaminopurine for postactivation. Activation method had a significant impact on the production efficiency of cloned dogs. There was a significant difference in full-term pregnancy rate and percentage of live puppies between the two methods (6.3% and 38.5% for FSA and F+CA, respectively). In our study, four out of five live offspring produced by F+CA survived versus FSA, which did not result in any surviving puppies. Overall, as few as 14 dogs and 54 reconstructed embryos were needed to produce a cloned puppy. In addition, the parity of recipient bitches had no effect on the success of SCNT in canine species. Both the nullipara and multipara bitches produced live puppies following SCNT-ET.


Assuntos
Clonagem de Organismos/veterinária , Cães/genética , Técnicas de Transferência Nuclear/veterinária , Animais , Cálcio/química , Clonagem de Organismos/métodos , Genótipo , Repetições de Microssatélites/genética , Oócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA