Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427787

RESUMO

Advancements in next-generation sequencing (NGS) technologies have led to a substantial increase in the availability of population genetic variant data, thus prompting the development of various population analysis tools to enhance our understanding of population structure and evolution. The tools that are currently used to analyze population genetic variant data generally require different environments, parameters, and formats of the input data, which can act as a barrier preventing the wide-spread usage of such tools by general researchers who may not be familiar with bioinformatics. To address this problem, we have developed an automated and comprehensive pipeline called PAPipe to perform nine widely used population genetic analyses using population NGS data. PAPipe seamlessly interconnects and serializes multiple steps, such as read trimming and mapping, genetic variant calling, data filtering, and format converting, along with nine population genetic analyses such as principal component analysis, phylogenetic analysis, population tree analysis, population structure analysis, linkage disequilibrium decay analysis, selective sweep analysis, population admixture analysis, sequentially Markovian coalescent analysis, and fixation index analysis. PAPipe also provides an easy-to-use web interface that allows for the parameters to be set and the analysis results to be browsed in intuitive manner. PAPipe can be used to generate extensive results that provide insights that can help enhance user convenience and data usability. PAPipe is freely available at https://github.com/jkimlab/PAPipe.


Assuntos
Biologia Computacional , Software , Filogenia , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genética Populacional
2.
Proc Natl Acad Sci U S A ; 119(40): e2209139119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161960

RESUMO

Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for ∼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.


Assuntos
Evolução Molecular , Cariótipo , Mamíferos , Sintenia , Animais , Bovinos/genética , Cromossomos de Mamíferos/genética , Eutérios/genética , Humanos , Mamíferos/genética , Filogenia , Bichos-Preguiça/genética , Sintenia/genética
3.
BMC Genomics ; 25(1): 299, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515031

RESUMO

BACKGROUND: Many studies have been performed to identify various genomic loci and genes associated with the meat quality in pigs. However, the full genetic architecture of the trait still remains unclear in part because of the lack of accurate identification of related structural variations (SVs) which resulted from the shortage of target breeds, the limitations of sequencing data, and the incompleteness of genome assemblies. The recent generation of a new pig breed with superior meat quality, called Nanchukmacdon, and its chromosome-level genome assembly (the NCMD assembly) has provided new opportunities. RESULTS: By applying assembly-based SV calling approaches to various genome assemblies of pigs including Nanchukmacdon, the impact of SVs on meat quality was investigated. Especially, by checking the commonality of SVs with other pig breeds, a total of 13,819 Nanchukmacdon-specific SVs (NSVs) were identified, which have a potential effect on the unique meat quality of Nanchukmacdon. The regulatory potentials of NSVs for the expression of nearby genes were further examined using transcriptome- and epigenome-based analyses in different tissues. CONCLUSIONS: Whole-genome comparisons based on chromosome-level genome assemblies have led to the discovery of SVs affecting meat quality in pigs, and their regulatory potentials were analyzed. The identified NSVs will provide new insights regarding genetic architectures underlying the meat quality in pigs. Finally, this study confirms the utility of chromosome-level genome assemblies and multi-omics analysis to enhance the understanding of unique phenotypes.


Assuntos
Genoma , Genômica , Suínos/genética , Animais , Carne/análise , Fenótipo , Cromossomos
4.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34951463

RESUMO

Using the self-fertilizing mangrove killifish, we characterized two mutants, shorttail (stl) and balltail (btl). These mutants showed abnormalities in the posterior notochord and muscle development. Taking advantage of a highly inbred isogenic strain of the species, we rapidly identified the mutated genes, noto and msgn1 in the stl and btl mutants, respectively, using a single lane of RNA sequencing without the need of a reference genome or genetic mapping techniques. Next, we confirmed a conserved morphant phenotype in medaka and demonstrate a crucial role of noto and msgn1 in cell sorting between the axial and paraxial part of the tail mesoderm. This novel system could substantially accelerate future small-scale forward-genetic screening and identification of mutations. Therefore, the mangrove killifish could be used as a complementary system alongside existing models for future molecular genetic studies.


Assuntos
Desenvolvimento Embrionário/genética , Fundulidae/genética , Notocorda/crescimento & desenvolvimento , Cauda/crescimento & desenvolvimento , Animais , Mapeamento Cromossômico , Embrião não Mamífero , Fundulidae/crescimento & desenvolvimento , Testes Genéticos , Genoma/genética , Mutação/genética , Notocorda/metabolismo , Fenótipo , Filogenia , Autofertilização , Cauda/metabolismo
5.
Nucleic Acids Res ; 50(W1): W254-W260, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35552439

RESUMO

Deep learning has been applied for solving many biological problems, and it has shown outstanding performance. Applying deep learning in research requires knowledge of deep learning theories and programming skills, but researchers have developed diverse deep learning platforms to allow users to build deep learning models without programming. Despite these efforts, it is still difficult for biologists to use deep learning because of limitations of the existing platforms. Therefore, a new platform is necessary that can solve these challenges for biologists. To alleviate this situation, we developed a user-friendly and easy-to-use web application called DLEB (Deep Learning Editor for Biologists) that allows for building deep learning models specialized for biologists. DLEB helps researchers (i) design deep learning models easily and (ii) generate corresponding Python code to run directly in their machines. DLEB provides other useful features for biologists, such as recommending deep learning models for specific learning tasks and data, pre-processing of input biological data, and availability of various template models and example biological datasets for model training. DLEB can serve as a highly valuable platform for easily applying deep learning to solve many important biological problems. DLEB is freely available at http://dleb.konkuk.ac.kr/.


Assuntos
Aprendizado Profundo , Software
6.
J Korean Med Sci ; 38(19): e141, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191845

RESUMO

BACKGROUND: Current international guidelines recommend against deep sedation as it is associated with worse outcomes in the intensive care unit (ICU). However, in Korea the prevalence of deep sedation and its impact on patients in the ICU are not well known. METHODS: From April 2020 to July 2021, a multicenter, prospective, longitudinal, noninterventional cohort study was performed in 20 Korean ICUs. Sedation depth extent was divided into light and deep using a mean Richmond Agitation-Sedation Scale value within the first 48 hours. Propensity score matching was used to balance covariables; the outcomes were compared between the two groups. RESULTS: Overall, 631 patients (418 [66.2%] and 213 [33.8%] in the deep and light sedation groups, respectively) were included. Mortality rates were 14.1% and 8.4% in the deep and light sedation groups (P = 0.039), respectively. Kaplan-Meier estimates showed that time to extubation (P < 0.001), ICU length of stay (P = 0.005), and death (P = 0.041) differed between the groups. After adjusting for confounders, early deep sedation was only associated with delayed time to extubation (hazard ratio [HR], 0.66; 95% confidence interval [CI], 0.55-0.80; P < 0.001). In the matched cohort, deep sedation remained significantly associated with delayed time to extubation (HR, 0.68; 95% CI, 0.56-0.83; P < 0.001) but was not associated with ICU length of stay (HR, 0.94; 95% CI, 0.79-1.13; P = 0.500) and in-hospital mortality (HR, 1.19; 95% CI, 0.65-2.17; P = 0.582). CONCLUSION: In many Korean ICUs, early deep sedation was highly prevalent in mechanically ventilated patients and was associated with delayed extubation, but not prolonged ICU stay or in-hospital death.


Assuntos
Delírio , Hipnóticos e Sedativos , Humanos , Hipnóticos e Sedativos/uso terapêutico , Estudos de Coortes , Estudos Prospectivos , Mortalidade Hospitalar , Respiração Artificial , Delírio/epidemiologia , Unidades de Terapia Intensiva , República da Coreia
7.
BMC Bioinformatics ; 23(1): 383, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123620

RESUMO

BACKGROUND: DNA methylation is an important epigenetic modification that is known to regulate gene expression. Whole-genome bisulfite sequencing (WGBS) is a powerful method for studying cytosine methylation in a whole genome. However, it is difficult to obtain methylation profiles using the WGBS raw reads and is necessary to be proficient in all types of bioinformatic tools for the study of DNA methylation. In addition, recent end-to-end pipelines for DNA methylation analyses are not sufficient for addressing those difficulties. RESULTS: Here we present msPIPE, a pipeline for DNA methylation analyses with WGBS data seamlessly connecting all the required tasks ranging from data pre-processing to multiple downstream DNA methylation analyses. The msPIPE can generate various methylation profiles to analyze methylation patterns in the given sample, including statistical summaries and methylation levels. Also, the methylation levels in the functional regions of a genome are computed with proper annotation. The results of methylation profiles, hypomethylation, and differential methylation analysis are plotted in publication-quality figures. The msPIPE can be easily and conveniently used with a Docker image, which includes all dependent packages and software related to DNA methylation analyses. CONCLUSION: msPIPE is a new end-to-end pipeline designed for methylation calling, profiling, and various types of downstream DNA methylation analyses, leading to the creation of publication-quality figures. msPIPE allows researchers to process and analyze the WGBS data in an easy and convenient way. It is available at https://github.com/jkimlab/msPIPE and https://hub.docker.com/r/jkimlab/mspipe .


Assuntos
Citosina , Sulfitos , Análise de Sequência de DNA/métodos , Sulfitos/metabolismo , Sequenciamento Completo do Genoma/métodos
8.
J Am Chem Soc ; 144(17): 7929-7938, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35468290

RESUMO

The Jahn-Teller effect (JTE) is one of the most important determinators of how much stress layered cathode materials undergo during charge and discharge; however, many reports have shown that traces of superstructure exist in pristine layered materials and irreversible phase transitions occur even after eliminating the JTE. A careful consideration of the energy of cationic distortion using a Taylor expansion indicated that second-order JTE (pseudo-JTE) is more widespread than the aforementioned JTE because of the various bonding states that occur between bonding and antibonding molecular orbitals in transition-metal octahedra. As a model case, a P2-type Mn-rich cathode (Na3/4MnO2) was investigated in detail. MnO6 octahedra are well known to undergo either elongation or contraction in a specific direction due to JTE. Here, the substitution of Li for Mn (Na3/4(Li1/4Mn3/4)O2) helped to oxidize Mn3+ to Mn4+ suppressing JTE; however, the MnO6 octahedra remained asymmetric with a clear trace of the superstructure. With various advanced analyses, we disclose the pseudo-JTE as a general reason for the asymmetric distortions of the MnO6 octahedra. These distortions lead to the significant electrochemical degradation of Na3/4Li1/4Mn3/4O2. The suppression of the pseudo-JTE modulates phase transition behaviors during Na intercalation/deintercalation and thereby improves all of the electrochemical properties. The insight obtained by coupling a theoretical background for the pseudo-JTE with verified layered cathode material lattice changes implies that many previous approaches can be rationalized by regulating pseudo-JTE. This suggests that the pseudo-JTE should be thought more important than the well-known JTE for layered cathode materials.

9.
Biochem Biophys Res Commun ; 637: 196-202, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36403483

RESUMO

E3 ubiquitin ligase, HOIL1-interacting protein (HOIP), forms the linear ubiquitin chain assembly complex (LUBAC) with HOIL and SHANK-associated RH domain interactor and catalyzes linear ubiquitination, directly linking the N- and C-termini of ubiquitin. Recently, several studies have implicated linear ubiquitination in aging and Alzheimer disease (AD). However, little is currently known about the roles of HOIP in brain aging and AD pathology. Here, we investigated the role of linear ubiquitin E3 ligase (LUBEL), a Drosophila HOIP ortholog, in brain aging and amyloid ß (Aß) pathology in a Drosophila AD model. DNA double-strand breaks (DSBs) were increased in the aged brains of neuron-specific LUBEL-knockdown flies compared to the age-matched controls. Silencing of LUBEL in the neuron of AD model flies increased the neuronal apoptosis and neurodegeneration, whereas silencing in glial cells had no such effect. Aß aggregation levels and DSBs were also increased in the LUBEL-silenced AD model fly brains, but autophagy and proteostasis were not affected by LUBEL silencing. Collectively, our results suggest that LUBEL protects neurons from aging-induced DNA damage and Aß neurotoxicity.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Animais , Peptídeos beta-Amiloides/toxicidade , Drosophila melanogaster/genética , Ubiquitina , Ubiquitina-Proteína Ligases/genética , Encéfalo , Envelhecimento , Dano ao DNA , Doença de Alzheimer/genética , Drosophila
10.
Genome Res ; 29(4): 576-589, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30760546

RESUMO

The role of chromosome rearrangements in driving evolution has been a long-standing question of evolutionary biology. Here we focused on ruminants as a model to assess how rearrangements may have contributed to the evolution of gene regulation. Using reconstructed ancestral karyotypes of Cetartiodactyls, Ruminants, Pecorans, and Bovids, we traced patterns of gross chromosome changes. We found that the lineage leading to the ruminant ancestor after the split from other cetartiodactyls was characterized by mostly intrachromosomal changes, whereas the lineage leading to the pecoran ancestor (including all livestock ruminants) included multiple interchromosomal changes. We observed that the liver cell putative enhancers in the ruminant evolutionary breakpoint regions are highly enriched for DNA sequences under selective constraint acting on lineage-specific transposable elements (TEs) and a set of 25 specific transcription factor (TF) binding motifs associated with recently active TEs. Coupled with gene expression data, we found that genes near ruminant breakpoint regions exhibit more divergent expression profiles among species, particularly in cattle, which is consistent with the phylogenetic origin of these breakpoint regions. This divergence was significantly greater in genes with enhancers that contain at least one of the 25 specific TF binding motifs and located near bovidae-to-cattle lineage breakpoint regions. Taken together, by combining ancestral karyotype reconstructions with analysis of cis regulatory element and gene expression evolution, our work demonstrated that lineage-specific regulatory elements colocalized with gross chromosome rearrangements may have provided valuable functional modifications that helped to shape ruminant evolution.


Assuntos
Pontos de Quebra do Cromossomo , Evolução Molecular , Ruminantes/genética , Sintenia , Animais , Elementos de DNA Transponíveis , Elementos Facilitadores Genéticos , Cariótipo , Ligação Proteica , Seleção Genética , Fatores de Transcrição/metabolismo
11.
J Korean Med Sci ; 37(9): e74, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35257529

RESUMO

BACKGROUND: There is no national survey on medical school faculty members' burnout in Korea. This study aimed to investigate burnout levels and explore possible factors related to burnout among faculty members of Korean medical schools. METHODS: An anonymous online questionnaire was distributed to 40 Korean medical schools from October 2020 to December 2020. Burnout was measured by a modified and revalidated version of the Maslach Burnout Inventory-Human Service Survey. RESULTS: A total of 996 faculty members participated in the survey. Of them, 855 answered the burnout questions, and 829 completed all the questions in the questionnaire. A significant number of faculty members showed a high level of burnout in each sub-dimension: 34% in emotional exhaustion, 66.3% in depersonalization, and 92.4% in reduced personal accomplishment. A total of 31.5% of faculty members revealed a high level of burnout in two sub-dimensions, while 30.5% revealed a high level of burnout in all three sub-dimensions. Woman faculty members or those younger than 40 reported significantly higher emotional exhaustion and depersonalization. Long working hours (≥ 80 hours/week) showed the highest reduced personal accomplishment scores (F = 4.023, P = 0.018). The most significant stressor or burnout source was "excessive regulation by the government or university." The research was the most exasperating task, but the education was the least stressful. CONCLUSION: This first nationwide study alerts that a significant number of faculty members in Korean medical schools seem to suffer from a high level of burnout. Further studies are necessary for identifying the burnout rate, related factors, and strategies to overcome physician burnout.


Assuntos
Esgotamento Profissional/epidemiologia , Docentes/psicologia , Faculdades de Medicina , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Satisfação no Emprego , Masculino , Pessoa de Meia-Idade , República da Coreia/epidemiologia , Inquéritos e Questionários
12.
BMC Genomics ; 22(1): 801, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34743693

RESUMO

BACKGROUND: DNA methylation and demethylation at CpG islands is one of the main regulatory factors that allow cells to respond to different stimuli. These regulatory mechanisms help in developing tissue without affecting the genomic composition or undergoing selection. Liver and backfat play important roles in regulating lipid metabolism and control various pathways involved in reproductive performance, meat quality, and immunity. Genes inside these tissue store a plethora of information and an understanding of these genes is required to enhance tissue characteristics in the future generation. RESULTS: A total of 16 CpG islands were identified, and they were involved in differentially methylation regions (DMRs) as well as differentially expressed genes (DEGs) of liver and backfat tissue samples. The genes C7orf50, ACTB and MLC1 in backfat and TNNT3, SIX2, SDK1, CLSTN3, LTBP4, CFAP74, SLC22A23, FOXC1, GMDS, GSC, GATA4, SEMA5A and HOXA5 in the liver, were categorized as differentially-methylated. Subsequently, Motif analysis for DMRs was performed to understand the role of the methylated motif for tissue-specific differentiation. Gene ontology studies revealed association with collagen fibril organization, the Bone Morphogenetic Proteins (BMP) signaling pathway in backfat and cholesterol biosynthesis, bile acid and bile salt transport, and immunity-related pathways in methylated genes expressed in the liver. CONCLUSIONS: In this study, to understand the role of genes in the differentiation process, we have performed whole-genome bisulfite sequencing (WGBS) and RNA-seq analysis of Nanchukmacdon pigs. Methylation and motif analysis reveals the critical role of CpG islands and transcriptional factors binding site (TFBS) in guiding the differential patterns. Our findings could help in understanding how methylation of certain genes plays an important role and can be used as biomarkers to study tissue specific characteristics.


Assuntos
Metilação de DNA , Genoma , Animais , Ilhas de CpG , Fígado/metabolismo , RNA-Seq , Suínos/genética
13.
BMC Bioinformatics ; 21(1): 185, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32397982

RESUMO

BACKGROUND: Microorganisms are important occupants of many different environments. Identifying the composition of microbes and estimating their abundance promote understanding of interactions of microbes in environmental samples. To understand their environments more deeply, the composition of microorganisms in environmental samples has been studied using metagenomes, which are the collections of genomes of the microorganisms. Although many tools have been developed for taxonomy analysis based on different algorithms, variability of analysis outputs of existing tools from the same input metagenome datasets is the main obstacle for many researchers in this field. RESULTS: Here, we present a novel meta-analysis tool for metagenome taxonomy analysis, called TAMA, by intelligently integrating outputs from three different taxonomy analysis tools. Using an integrated reference database, TAMA performs taxonomy assignment for input metagenome reads based on a meta-score by integrating scores of taxonomy assignment from different taxonomy classification tools. TAMA outperformed existing tools when evaluated using various benchmark datasets. It was also successfully applied to obtain relative species abundance profiles and difference in composition of microorganisms in two types of cheese metagenome and human gut metagenome. CONCLUSION: TAMA can be easily installed and used for metagenome read classification and the prediction of relative species abundance from multiple numbers and types of metagenome read samples. TAMA can be used to more accurately uncover the composition of microorganisms in metagenome samples collected from various environments, especially when the use of a single taxonomy analysis tool is unreliable. TAMA is an open source tool, and can be downloaded at https://github.com/jkimlab/TAMA.


Assuntos
Bactérias/classificação , Classificação/métodos , Metagenoma , Metagenômica/métodos , Bactérias/genética , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Filogenia
14.
BMC Genomics ; 21(1): 554, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787779

RESUMO

BACKGROUND: Advances in next-generation sequencing technologies have provided an opportunity to perform population-level comparative genomic analysis to discover unique genomic characteristics of domesticated animals. Duck is one of the most popular domesticated waterfowls, which is economically important as a source of meat, eggs, and feathers. The objective of this study is to perform population and functional analyses of Korean native duck, which has a distinct meat flavor and texture phenotype, using whole-genome sequencing data. To study the distinct genomic features of Korean native duck, we conducted population-level genomic analysis of 20 Korean native ducks together with 15 other duck breeds. RESULTS: A total of 15.56 million single nucleotide polymorphisms were detected in Korean native duck. Based on the unique existence of non-synonymous single nucleotide polymorphisms in Korean native duck, a total of 103 genes related to the unique genomic characteristics of Korean native duck were identified in comparison with 15 other duck breeds, and their functions were investigated. The nucleotide diversity and population structures among the used duck breeds were then compared, and their phylogenetic relationship was analyzed. Finally, highly differentiated genomic regions among Korean native duck and other duck breeds were identified, and functions of genes in those regions were examined. CONCLUSIONS: This is the first study to compare the population of Korean native duck with those of other duck breeds by using whole-genome sequencing data. Our findings can be used to expand our knowledge of genomic characteristics of Korean native duck, and broaden our understanding of duck breeds.


Assuntos
Patos , Genoma , Animais , Patos/genética , Filogenia , Polimorfismo de Nucleotídeo Único , República da Coreia , Sequenciamento Completo do Genoma
15.
Nucleic Acids Res ; 46(W1): W89-W94, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29746660

RESUMO

Proteins perform biological functions through cascading interactions with each other by forming protein complexes. As a result, interactions among proteins, called protein-protein interactions (PPIs) are not completely free from selection constraint during evolution. Therefore, the identification and analysis of PPI changes during evolution can give us new insight into the evolution of functions. Although many algorithms, databases and websites have been developed to help the study of PPIs, most of them are limited to visualize the structure and features of PPIs in a chosen single species with limited functions in the visualization perspective. This leads to difficulties in the identification of different patterns of PPIs in different species and their functional consequences. To resolve these issues, we developed a web application, called INTER-Species Protein Interaction Analysis (INTERSPIA). Given a set of proteins of user's interest, INTERSPIA first discovers additional proteins that are functionally associated with the input proteins and searches for different patterns of PPIs in multiple species through a server-side pipeline, and second visualizes the dynamics of PPIs in multiple species using an easy-to-use web interface. INTERSPIA is freely available at http://bioinfo.konkuk.ac.kr/INTERSPIA/.


Assuntos
Biologia Computacional , Internet , Mapeamento de Interação de Proteínas/métodos , Software , Algoritmos , Bases de Dados de Proteínas , Proteínas/química , Proteínas/genética , Interface Usuário-Computador
16.
Proc Natl Acad Sci U S A ; 114(27): E5379-E5388, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630326

RESUMO

Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over ∼105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first ∼60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases.


Assuntos
Cromossomos/ultraestrutura , Eutérios/genética , Evolução Molecular , Algoritmos , Animais , Linhagem da Célula , Pontos de Quebra do Cromossomo , Biologia Computacional/métodos , Rearranjo Gênico , Genoma , Genoma Humano , Humanos , Hibridização in Situ Fluorescente , Filogenia , Software , Sintenia
17.
BMC Bioinformatics ; 20(1): 147, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885117

RESUMO

BACKGROUND: Thanks to the recent advancements in next-generation sequencing (NGS) technologies, large amount of genomic data, which are short DNA sequences known as reads, has been accumulating. Diverse assemblers have been developed to generate high quality de novo assemblies using the NGS reads, but their output is very different because of algorithmic differences. However, there are not properly structured measures to show the similarity or difference in assemblies. RESULTS: We developed a new measure, called the GMASS score, for comparing two genome assemblies in terms of their structure. The GMASS score was developed based on the distribution pattern of the number and coverage of similar regions between a pair of assemblies. The new measure was able to show structural similarity between assemblies when evaluated by simulated assembly datasets. The application of the GMASS score to compare assemblies in recently published benchmark datasets showed the divergent performance of current assemblers as well as its ability to compare assemblies. CONCLUSION: The GMASS score is a novel measure for representing structural similarity between two assemblies. It will contribute to the understanding of assembly output and developing de novo assemblers.


Assuntos
Genoma Humano , Genômica , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Teóricos , Estrutura Molecular , Análise de Sequência de DNA
18.
J Nanosci Nanotechnol ; 19(3): 1592-1596, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469228

RESUMO

The brazing characteristics and bonding strengths of pure titanium joints are evaluated for joints brazed with Zr-17Ti-22Ni filler. Vacuum brazing was conducted at temperatures between the melting temperatures of the filler metals and the beta-transition temperature of pure titanium at 3 MPa of pressure for 5 min. Fracturing of the pure titanium joint brazed at 1,093 K occurred before yielding during the tensile tests owing to the presence of a serious segregation region containing harder and more brittle [Ti, Zr]2Ni intermetallic compounds. In contrast, in pure titanium joints brazed at and above 1,113 K, fracturing occurred at the base metal. The yield strengths of the samples brazed at 1,113 K-1,133 K were estimated to be in the range of 320-350 MPa and the ultimate tensile strengths likewise ranged from 350 to 380 MPa. The strength of pure titanium brazed at 1,153 K decreased rapidly. The results of this study show that the optimum temperature to ensure good performance after the brazing of pure titanium with Zr-17Ti-22Ni as a filler metal ranges from 1,113 K to 1,133 K.


Assuntos
Titânio , Temperatura , Resistência à Tração
19.
J Nanosci Nanotechnol ; 19(3): 1772-1776, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469264

RESUMO

Optimum processing conditions were obtained by evaluating the hot working behavior of commercially pure Ti using hot torsion tests. Hot torsion tests were conducted at temperatures ranging from 800 °C-1000 °C and strain rates ranging from 0.1-10 s-1. The flow curves show that the peak stress increases as the temperature decreases and the strain rate increases. The optimum processing conditions were derived by comparing the processing and activation energy maps. The microstructure was characterized based on various regions of the processing map. The activation energy for plastic deformation was obtained using the constitutive equation. The activation energy differs depending on the constituent phases.

20.
J Transp Geogr ; 74: 1-9, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32288378

RESUMO

This study explores the impact of domestic low-cost carriers (LCCs) on regional tourism and aviation industries. In particular, it articulates the changing competitive dynamics between LCCs and full-service carriers (FSCs). The Lotka-Volterra (LV) model, utilising the newly proposed moving-window concept, is used for the assessment of the influence of LCCs on the South Korean and airline industry. Analysis results demonstrate that the competitive dynamics between LCCs and FSCs are not static and have evolved over time. The study proposes an efficient and effective change analysis and enables strategic planning for aviation industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA