Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 208, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353763

RESUMO

The advent of the so-called colorful biology era is in line with the discovery of fluorescent proteins (FPs), which can be widely used to detect the intracellular locations of macromolecules or to determine the abundance of metabolites in organelles. The application of multiple FPs that emit different spectra and colors could be implemented to precisely evaluate cellular events. FPs were initially established with the emergence of the green fluorescent protein (GFP) from jellyfish. Red fluorescent proteins (RFPs) from marine anemones and several corals adopt fluorescent chromophores that are similar to GFP. Chromophores of GFP and GFP-like FPs are formed through the oxidative rearrangement of three chromophore-forming residues, thereby limiting their application to only oxidative environments. Alternatively, some proteins can be fluorescent upon their interaction with cellular prosthetic cofactors and, thus, work in aerobic and anaerobic conditions. The modification of an NADPH-dependent blue fluorescent protein (BFP) also expanded its application to the quantization of NADPH in the cellular environment. However, cofactor-dependent BFPs have an intrinsic weakness of poor photostability with a high fluorescent background. This review explores GFP-derived and NADPH-dependent BFPs with a focus on NADPH-dependent BFPs, which might be technically feasible in the near future upon coupling with two-photon fluorescence microscopy or nucleic acid-mimickers. KEY POINTS: • Oxidation-dependent GFP-like BFPs and redox-free NADPH-dependent BFPs • GFPs of weak photostability and intensity with a high fluorescent background • Real-time imaging using mBFP under two-photon fluorescence microscopy.


Assuntos
Antozoários , Fenilpropionatos , Animais , NADP , Proteínas de Fluorescência Verde/genética , Corantes
2.
BMC Public Health ; 24(1): 585, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395841

RESUMO

BACKGROUND & AIM(S): Medication adherence (MA) is a key factor in maintaining adequate blood pressure and preventing complications. However, some older adults experience difficulties in taking medicine properly due to declines in cognitive function. Although subjective memory complaints (SMC) are recognized as early markers of cognitive impairment, previous studies concerning the relationship between MA and cognitive function have focused only on objective cognitive function. Furthermore, while depression has a high correlation with SMC, low MA, and social support, there is limited evidence on their relationship. This study aims to understand the effect of SMC on MA and the mediating effect of depression and social support. METHOD(S): This study is a descriptive cross-sectional investigation. A sample of 195 community-dwelling hypertensive older adults with multimorbidity from 3 community senior centers in Gwangju, South Korea were recruited through convenience sampling. Data was collected through face-to-face survey from January to March 2018. The PROCESS macro v4.2 program [Model 6] was used to analyze the mediating effect of depression and social support in the relationship between SMC and MA. Data analysis was performed using SPSS/WIN 26.0 and STATA MP 17.0. RESULTS: The average MA was 6.74. There were significant differences in MA according to awareness of prescribed drugs, awareness of side effects, insomnia, and healthcare accessibility. SMC was positively correlated with depression, while social support and MA were negatively correlated. While depression was a significant mediator of the effect of SMC on MA, the mediating effect of social support was not significant. The multiple mediation effect of depression and social support was not significant. CONCLUSION: The results suggest that medication management of older adults in community settings should be accompanied by a comprehensive health assessment of associated factors. Health professionals should explore strategies to improve memory as well as prevent and alleviate depression to increase MA among hypertensive older adults with multimorbidity.


Assuntos
Depressão , Multimorbidade , Humanos , Idoso , Depressão/epidemiologia , Depressão/psicologia , Estudos Transversais , Apoio Social , Adesão à Medicação
3.
Arch Microbiol ; 205(12): 363, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906281

RESUMO

In bacteria and primitive eukaryotes, sulfonamide antibiotics block the folate pathway by inhibiting dihydropteroate synthase (FolP) that combines para-aminobenzoic acid (pABA) and dihydropterin pyrophosphate (DHPP) to form dihydropteroic acid (DHP), a precursor for tetrahydrofolate synthesis. However, the emergence of resistant strains has severely compromised the use of pABA mimetics as sulfonamide drugs. Salmonella enterica serovar Gallinarum (S. Gallinarum) is a significant source of antibiotic-resistant infections in poultry. Here, a sulfonamide-resistant FolP mutant library of S. Gallinarum was generated through random mutagenesis. Among resistant strains, substitution of amino acid Arginine 171 with Proline (R171P) in the FolP protein conferred the highest resistance against sulfonamide. Substitution of Phe28 with Leu or Ile (F28L/I) led to modest sulfonamide resistance. Structural modeling indicates that R171P and Phenylalanine 28 with leucine or isoleucine (F28L/I) substitution mutations are located far from the substrate-binding site and cause insignificant conformational changes in the FolP protein. Rather, in silico studies suggest that the mutations altered the stability of the protein, potentially resulting in sulfonamide resistance. Identification of specific mutations in FolP that confer resistance to sulfonamide would contribute to our understanding of the molecular mechanisms of antibiotic resistance.


Assuntos
Ácido 4-Aminobenzoico , Di-Hidropteroato Sintase , Di-Hidropteroato Sintase/genética , Di-Hidropteroato Sintase/química , Di-Hidropteroato Sintase/metabolismo , Antibacterianos/metabolismo , Sulfanilamida , Sulfonamidas/farmacologia , Sulfonamidas/química , Mutação
4.
Aging Male ; 26(1): 2257302, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812685

RESUMO

BACKGROUND: With the rapid increase in population longevity, more clinical attention is being paid to the overall health of long-lived people, especially centenarians. Subjective health, which is the perception of one's health status, predicts both mortality and declining physical function in older adults. The purpose of this study was to investigate the factors related to subjective health among centenarians and near-centenarians (ages ≥95) living in a rural area of South Korea. METHODS: A total of 101 participants were enrolled from four different regions (Gurye, Gokseong, Sunchang, and Damyang), known as the Longevity Belt in Korea. Variables assessing physical and mental health, including the results of blood tests, were examined. Factors associated with good subjective health were identified with logistic regression analysis. RESULTS: Fifty-six participants (59.6%) were subjectively healthy among the centenarians and near-centenarians. Logistic regression analysis revealed that depressive mood was the only factor associated with subjective health and was negatively correlated. The regression model explained 39% of the variance in subjective health. CONCLUSIONS: These findings emphasize the importance of mental health at very advanced ages. Because depressive mood negatively correlates with subjective health, more attention is needed to prevent and manage mood symptoms of people of advanced ages, including centenarians.


Assuntos
Centenários , Depressão , Idoso de 80 Anos ou mais , Humanos , Idoso , Depressão/epidemiologia , Estudos Transversais , Autoavaliação Diagnóstica , Longevidade
5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613556

RESUMO

The orphan nuclear receptor, estrogen-related receptor γ (ERRγ) is a constitutively active transcription factor involved in mitochondrial metabolism and energy homeostasis. GSK5182, a specific inverse agonist of ERRγ that inhibits transcriptional activity, induces a conformational change in ERRγ, resulting in a loss of coactivator binding. However, the molecular mechanism underlying the stabilization of the ERRγ protein by its inverse agonist remains largely unknown. In this study, we found that GSK5182 inhibited ubiquitination of ERRγ, thereby stabilizing the ERRγ protein, using cell-based assays and confocal image analysis. Y326 of ERRγ was essential for stabilization by GSK5182, as ligand-induced stabilization of ERRγ was not observed with the ERRγ-Y326A mutant. GSK5182 suppressed ubiquitination of ERRγ by the E3 ligase Parkin and subsequent degradation. The inhibitory activity of GSK5182 was strong even when the ERRγ protein level was elevated, as ERRγ bound to GSK5182 recruited a corepressor, small heterodimer partner-interacting leucine zipper (SMILE), through the activation function 2 (AF-2) domain, without alteration of the nuclear localization or DNA-binding ability of ERRγ. In addition, the AF-2 domain of ERRγ was critical for the regulation of protein stability. Mutants in the AF-2 domain were present at higher levels than the wild type in the absence of GSK5182. Furthermore, the ERRγ-L449A/L451A mutant was no longer susceptible to GSK5182. Thus, the AF-2 domain of ERRγ is responsible for the regulation of transcriptional activity and protein stability by GSK5182. These findings suggest that GSK5182 regulates ERRγ by a unique molecular mechanism, increasing the inactive form of ERRγ via inhibition of ubiquitination.


Assuntos
Agonismo Inverso de Drogas , Receptores Nucleares Órfãos , Furilfuramida , Ubiquitinação , Estabilidade Proteica
6.
Proteins ; 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33792088

RESUMO

Carbohydrates play a major role in infection strategies of various enteric pathogens. In Campylobacter jejuni, the most common cause of gastroenteritis, uniquely modified heptoses found in surface carbohydrates are synthesized by specific pathways. Owing to the importance of such pathways for the infectious potential of pathogens and/or their virulence, these biosynthesis pathways present potential targets for therapeutic intervention. Here, we determined the crystal structure of GDP-6-OMe-4-keto-L-xylo-heptose reductase (MlghC), an enzyme within the L-gluco-heptose synthesis pathway of C. jejuni strain NCTC 11168. This enzyme lacks the canonical tyrosine residue of the conserved catalytic Ser-Lys-Tyr triad commonly found among functionally related reductases. Despite adopting the overall two-domain fold shared with other short-chain dehydrogenase/reductase family members, subtle structural differences in the interface between the cofactor- and substrate-binding domains explain the absence of epimerase activity and different substrate specificity of this reductase. Modeling of the product-bound complex based on the crystal structure presented here suggests that a tyrosine residue unique to MlghC replaces the missing canonical residue of the catalytic triad.

7.
J Synchrotron Radiat ; 28(Pt 4): 1210-1215, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212886

RESUMO

BL-11C, a new protein crystallography beamline, is an in-vacuum undulator-based microfocus beamline used for macromolecular crystallography at the Pohang Accelerator Laboratory and it was made available to users in June 2017. The beamline is energy tunable in the range 5.0-20 keV to support conventional single- and multi-wavelength anomalous-dispersion experiments against a wide range of heavy metals. At the standard working energy of 12.659 keV, the monochromated beam is focused to 4.1 µm (V) × 8.5 µm (H) full width at half-maximum at the sample position and the measured photon flux is 1.3 × 1012 photons s-1. The experimental station is equipped with a Pilatus3 6M detector, a micro-diffractometer (MD2S) incorporating a multi-axis goniometer, and a robotic sample exchanger (CATS) with a dewar capacity of 90 samples. This beamline is suitable for structural determination of weakly diffracting crystalline substances, such as biomaterials, including protein, nucleic acids and their complexes. In addition, serial crystallography experiments for determining crystal structures at room temperature are possible. Herein, the current beamline characteristics, technical information for users and some recent scientific highlights are described.


Assuntos
Cristalografia por Raios X/instrumentação , Substâncias Macromoleculares/química , Proteínas/química , Radioisótopos de Carbono , Desenho de Equipamento , Legionella/química , Muramidase/química , Neisseria meningitidis/química , Elementos Estruturais de Proteínas , Síncrotrons , Zymomonas/química
8.
Nucleic Acids Res ; 46(22): 11776-11788, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30321390

RESUMO

Modification of chromatin and related transcription factors by histone deacetylases (HDACs) is one of the major strategies for controlling gene expression in eukaryotes. The HDAC domains of class IIa HDACs repress the respective target genes by interacting with the C-terminal region of the silencing mediator for retinoid and thyroid receptor (SMRT) repression domain 3 (SRD3c). However, latent catalytic activity suggests that their roles as deacetylases in gene regulation are unclear. Here, we found that two conserved GSI-containing motifs of SRD3c are critical for HDAC4 binding. Two SMRT peptides including these motifs commonly form a ß-hairpin structure in the cleft and block the catalytic entry site of HDAC4. They interact mainly with class IIa HDAC-specific residues of HDAC4 in a closed conformation. Structure-guided mutagenesis confirmed critical interactions between the SMRT peptides and HDAC4 and -5 as well as the contribution of the Arg1369 residue in the first motif for optimal binding to the two HDACs. These results indicate that SMRT binding does not activate the cryptic deacetylase activity of HDAC4 and explain how class IIa HDACs and the SMRT-HDAC3 complex are coordinated during gene regulation.


Assuntos
Histona Desacetilases/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Arginina/química , Domínio Catalítico , Células HEK293 , Humanos , Microscopia Confocal , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/química , Ligação Proteica , Termodinâmica
9.
Biochem Biophys Res Commun ; 512(3): 564-570, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914200

RESUMO

Baeyer-Villiger monooxygenase (BVMO) catalyzes insertion of an oxygen atom into aliphatic or cyclic ketones with high regioselectivity. The BVMOs from Parvibaculum lavamentivorans (BVMOParvi) and Oceanicola batsensis (BVMOOcean) are interesting because of their homologies, with >40% sequence identity, and reaction with the same cyclic ketones with a methyl moiety to give different products. The revealed BVMOParvi structure shows that BVMOParvi forms a two-domain structure like other BVMOs. It has two inserted residues, compared with BVMOOcean, that form a bulge near the bound flavin adenine dinucleotide in the active site. Furthermore, this bulge is linked to a nearby α-helix via a disulfide bond, probably restricting access of the bulky methyl group of the substrate to this bulge. Another sequence motif at the entrance of the active site (Ala-Ser in BVMOParvi and Ser-Thr in BVMOOcean) allows a large volume in BVMOParvi. These minute differences may discriminate a substrate orientation in both BVMOs from the initial substrate binding pocket to the final oxygenation site, resulting in the inserted oxygen atom being in different positions of the same substrate.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Cetonas/metabolismo , Oxigenases de Função Mista/metabolismo , Alphaproteobacteria/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Domínio Catalítico , Cristalografia por Raios X , Ciclização , Cetonas/química , Oxigenases de Função Mista/química , Modelos Moleculares , NADP/metabolismo , Oxigênio/metabolismo , Conformação Proteica , Especificidade por Substrato
10.
FASEB J ; 32(10): 5470-5482, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29688811

RESUMO

The opportunistic bacterium Pseudomonas aeruginosa has been recognized as an important pathogen of clinical relevance and is a leading cause of hospital-acquired infections. The presence of a glycolytic enzyme in Pseudomonas, which is known to be inhibited by trehalose 6-phosphate (T6P) in other organisms, suggests that these bacteria may be vulnerable to the detrimental effects of intracellular T6P accumulation. In the present study, we explored the structural and functional properties of trehalose 6-phosphate phosphatase (TPP) in P. aeruginosa in support of future target-based drug discovery. A survey of genomes revealed the existence of 2 TPP genes with either chromosomal or extrachromosomal location. Both TPPs were produced as recombinant proteins, and characterization of their enzymatic properties confirmed specific, magnesium-dependent catalytic hydrolysis of T6P. The 3-dimensional crystal structure of the chromosomal TPP revealed a protein dimer arising through ß-sheet expansion of the individual monomers, which possess the overall fold of halo-acid dehydrogenases.-Cross, M., Biberacher, S., Park, S.-Y., Rajan, S., Korhonen, P., Gasser, R. B., Kim, J.-S., Coster, M. J., Hofmann, A. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.


Assuntos
Proteínas de Bactérias/química , Monoéster Fosfórico Hidrolases/química , Multimerização Proteica , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Estrutura Quaternária de Proteína , Pseudomonas aeruginosa/genética
11.
FASEB J ; 31(3): 920-926, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27864376

RESUMO

The trehalose biosynthetic pathway is of great interest for the development of novel therapeutics because trehalose is an essential disaccharide in many pathogens but is neither required nor synthesized in mammalian hosts. As such, trehalose-6-phosphate phosphatase (TPP), a key enzyme in trehalose biosynthesis, is likely an attractive target for novel chemotherapeutics. Based on a survey of genomes from a panel of parasitic nematodes and bacterial organisms and by way of a structure-based amino acid sequence alignment, we derive the topological structure of monoenzyme TPPs and classify them into 3 groups. Comparison of the functional roles of amino acid residues located in the active site for TPPs belonging to different groups reveal nuanced variations. Because current literature on this enzyme family shows a tendency to infer functional roles for individual amino acid residues, we investigated the roles of the strictly conserved aspartate tetrad in TPPs of the nematode Brugia malayi by using a conservative mutation approach. In contrast to aspartate-213, the residue inferred to carry out the nucleophilic attack on the substrate, we found that aspartate-215 and aspartate-428 of BmTPP are involved in the chemistry steps of enzymatic hydrolysis of the substrate. Therefore, we suggest that homology-based inference of functionally important amino acids by sequence comparison for monoenzyme TPPs should only be carried out for each of the 3 groups.-Cross, M., Lepage, R., Rajan, S., Biberacher, S., Young, N. D., Kim, B.-N., Coster, M. J., Gasser, R. B., Kim, J.-S., Hofmann, A. Probing function and structure of trehalose-6-phosphate phosphatases from pathogenic organisms suggests distinct molecular groupings.


Assuntos
Brugia Malayi/enzimologia , Sequência Conservada , Proteínas de Helminto/química , Monoéster Fosfórico Hidrolases/química , Animais , Ácido Aspártico/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Mycobacterium/enzimologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
12.
Biochem Biophys Res Commun ; 488(2): 407-412, 2017 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-28506829

RESUMO

The tRNA methyltransferase J (TrmJ) and D (TrmD) catalyze the transferring reaction of a methyl group to the tRNA anticodon loop. They commonly have the N-terminal domain (NTD) and the C-terminal domain (CTD). Whereas two monomeric CTDs symmetrically interact with a dimeric NTD in TrmD, a CTD dimer has exhibited an asymmetric interaction with the NTD dimer in the presence of a product. The elucidated apo-structure of the full-length TrmJ from Zymomonas mobilis ZM4 shows a dimeric CTD that asymmetrically interacts with the NTD dimer, thereby distributing non-symmetrical potential charge on the both side of the protein surface. Comparison with the product-bound structures reveals a local re-orientation of the two arginine-containing loop at the active site, which interacts with the product. Further, the CTD dimers have diverse orientations compared to the NTD dimers, suggesting their flexibility. These data indicate that an asymmetric interaction between the NTD dimer and the CTD dimer is a common structural feature among TrmJ proteins, regardless of the presence of a substrate or a product.


Assuntos
Zymomonas/enzimologia , tRNA Metiltransferases/química , Dimerização , Modelos Moleculares , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(46): 16359-64, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368186

RESUMO

Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas/fisiologia , DNA Helicases/química , DNA Bacteriano/metabolismo , Desoxirribonucleases/química , Sequências Repetitivas Dispersas , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Bactérias/genética , Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Cristalografia por Raios X , DNA/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Interações Hospedeiro-Patógeno , Magnésio/metabolismo , Manganês/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA Bacteriano/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Biochem Biophys Res Commun ; 459(4): 610-6, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25753201

RESUMO

Viral protein genome-linked (VPg) proteins play a critical role in the life cycle of vertebrate and plant positive-sense RNA viruses by acting as a protein primer for genome replication and as a protein cap for translation initiation. Here we report the solution structure of the porcine sapovirus VPg core (VPg(C)) determined by multi-dimensional NMR spectroscopy. The structure of VPg(C) is composed of three α-helices stabilized by several conserved hydrophobic residues that form a helical bundle core similar to that of feline calicivirus VPg. The putative nucleotide acceptor Tyr956 within the first helix of the core is completely exposed to solvent accessible surface to facilitate nucleotidylation by viral RNA polymerase. Comparison of VPg structures suggests that the surface for nucleotidylation site is highly conserved among the Caliciviridae family, whereas the backbone core structures are different. These structural features suggest that caliciviruses share common mechanisms of VPg-dependent viral replication and translation.


Assuntos
Sapovirus/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Suínos , Proteínas Virais/química , Proteínas Virais/genética
15.
Diabetologia ; 57(12): 2576-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205222

RESUMO

AIMS/HYPOTHESIS: Insulin resistance, a major contributor to the pathogenesis of type 2 diabetes, leads to increased hepatic glucose production (HGP) owing to an impaired ability of insulin to suppress hepatic gluconeogenesis. Nuclear receptor oestrogen-related receptor γ (ERRγ) is a major transcriptional regulator of hepatic gluconeogenesis. In this study, we investigated insulin-dependent post-translational modifications (PTMs) altering the transcriptional activity of ERRγ for the regulation of hepatic gluconeogenesis. METHODS: We examined insulin-dependent phosphorylation and subcellular localisation of ERRγ in cultured cells and in the liver of C57/BL6, leptin receptor-deficient (db/db), liver-specific insulin receptor knockout (LIRKO) and protein kinase B (PKB) ß-deficient (Pkbß (-/-)) mice. To demonstrate the role of ERRγ in the inhibitory action of insulin on hepatic gluconeogenesis, we carried out an insulin tolerance test in C57/BL6 mice expressing wild-type or phosphorylation-deficient mutant ERRγ. RESULTS: We demonstrated that insulin suppressed the transcriptional activity of ERRγ by promoting PKB/Akt-mediated phosphorylation of ERRγ at S179 and by eliciting translocation of ERRγ from the nucleus to the cytoplasm through interaction with 14-3-3, impairing its ability to promote hepatic gluconeogenesis. In addition, db/db, LIRKO and Pkbß (-/-) mice displayed enhanced ERRγ transcriptional activity due to a block in PKBß-mediated ERRγ phosphorylation during refeeding. Finally, the phosphorylation-deficient mutant ERRγ S179A was resistant to the inhibitory action of insulin on HGP. CONCLUSIONS/INTERPRETATION: These results suggest that ERRγ is a major contributor to insulin action in maintaining hepatic glucose homeostasis.


Assuntos
Gluconeogênese/efeitos dos fármacos , Insulina/farmacologia , Fígado/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 535-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531487

RESUMO

A multi-subunit ribonucleoprotein complex termed the Cmr RNA-silencing complex recognizes and destroys viral RNA in the CRISPR-mediated immune defence mechanism in many prokaryotes using an as yet unclear mechanism. In Archaeoglobus fulgidus, this complex consists of six subunits, Cmr1-Cmr6. Here, the crystal structure of Cmr1 from A. fulgidus is reported, revealing that the protein is composed of two tightly associated ferredoxin-like domains. The domain located at the N-terminus is structurally most similar to the N-terminal ferredoxin-like domain of the CRISPR RNA-processing enzyme Cas6 from Pyrococcus furiosus. An ensuing mutational analysis identified a highly conserved basic surface patch that binds single-stranded nucleic acids specifically, including the mature CRISPR RNA, but in a sequence-independent manner. In addition, this subunit was found to cleave single-stranded RNA. Together, these studies elucidate the structure and the catalytic activity of the Cmr1 subunit.


Assuntos
Proteínas Arqueais/química , Archaeoglobus fulgidus/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Subunidades Proteicas/química , RNA Viral/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/imunologia , Archaeoglobus fulgidus/virologia , Sítios de Ligação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Interações Hospedeiro-Patógeno , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pyrococcus furiosus/química , Pyrococcus furiosus/genética , RNA Viral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato
17.
Biochem Biophys Res Commun ; 445(1): 78-83, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24491569

RESUMO

A phosphate group at the C1-atom of inositol-monophosphate (IMP) and fructose-1,6-bisphosphate (FBP) is hydrolyzed by a phosphatase IMPase and FBPase in a metal-dependent way, respectively. The two enzymes are almost indiscernible from each other because of their highly similar sequences and structures. Metal ions are bound to residues on the ß1- and ß2-strands and one mobile loop. However, FBP has another phosphate and FBPases exist as a higher oligomeric state, which may discriminate FBPases from IMPases. There are three genes annotated as FBPases in Zymomonas mobilis, termed also cbbF (ZmcbbF). The revealed crystal structure of one ZmcbbF shows a globular structure formed by five stacked layers. Twenty-five residues in the middle of the sequence form an α-helix and a ß-strand, which occupy one side of the catalytic site. A non-polar Leu residue among them is protruded to the active site, pointing out unfavorable access of a bulky charged group to this side. In vitro assays have shown its dimeric form in solution. Interestingly, two ß-strands of ß1 and ß2 are disordered in the ZmcbbF structure. These data indicate that ZmcbbF might structurally belong to IMPase, and imply that its active site would be reorganized in a yet unreported way.


Assuntos
Proteínas de Bactérias/química , Frutose-Bifosfatase/química , Monoéster Fosfórico Hidrolases/química , Zymomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Luz , Metais/química , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Zymomonas/genética
18.
Curr Opin Biotechnol ; 85: 103047, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38128199

RESUMO

Single-carbon (C1) biorefinery plays a key role in the consumption of global greenhouse gases and a circular carbon economy. Thereby, we have focused on the valorization of C1 compounds (e.g. methanol, formaldehyde, and formate) into multicarbon products, including bioplastic monomers, glycolate, and ethylene glycol. For instance, methanol, derived from the oxidation of CH4, can be converted into glycolate, ethylene glycol, or erythrulose via formaldehyde and glycolaldehyde, employing C1 and/or C2 carboligases as essential enzymes. Escherichia coli was engineered to convert formate, produced from CO via CO2 or from CO2 directly, into glycolate. Recent progress in the design of biotransformation pathways, enzyme discovery, and engineering, as well as whole-cell biocatalyst engineering for C1 biorefinery, was addressed in this review.


Assuntos
Carbono , Metanol , Metanol/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Etilenoglicol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Formiatos/metabolismo , Formaldeído/metabolismo , Glicolatos/metabolismo
19.
Bioresour Bioprocess ; 11(1): 9, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38647973

RESUMO

The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min-1 mg-1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L-1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L-1 h-1 and a specific productivity of 357.6 mg mg-enzyme-1 h-1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L-1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L-1 h-1 and 583.4 mg mg-enzyme-1 h-1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.

20.
Mol Microbiol ; 86(3): 707-19, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22924981

RESUMO

In the modern concept of gene regulation, 'DNA looping' is the most common underlying mechanism in the interaction between RNA polymerase (RNAP) and transcription factors acting at a distance. This study demonstrates an additional mechanism by which DNA-bound proteins communicate with each other, by analysing the bacterial histone-like nucleoid-structuring protein (H-NS), a general transcriptional silencer. The LEE5 promoter (LEE5p) of enteropathogenic Escherichia coli was used as a model system to investigate the mechanism of H-NS-mediated transcription repression. We found that H-NS represses LEE5p by binding to a cluster of A tracks upstream of -114, followed by spreading to a site at the promoter through the oligomerization of H-NS molecules. At the promoter, the H-NS makes a specific contact with the carboxy terminal domain of the α subunit of RNAP, which prevents the processing of RNAP-promoter complexes into initiation-competent open promoter complexes, thereby regulating LEE5p from distance.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA