Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 2147-2161, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297751

RESUMO

We present polarization-free Bragg filters having subwavelength gratings (SWGs) in the lateral cladding region. This Bragg design expands modal fields toward upper cladding, resulting in enhanced light interaction with sensing analytes. Two device configurations are proposed and examined, one with index-matched coupling between transverse electric (TE) and transverse magnetic (TM) modes and the other one with hybrid-mode (HM) coupling. Both configurations introduce a strong coupling between two orthogonal modes (either TE-TM or HM1-HM2) and rotate the polarization of the input wave through Bragg reflection. The arrangements of SWGs help to achieve two configurations with different orthogonal modes, while expanding modal profiles toward the upper cladding region. Our proposed SWG-assisted Bragg gratings with polarization independency eliminate the need for a polarization controller and effectively tailor the modal properties, enhancing the potential of integrated photonic sensing applications.

2.
Opt Express ; 31(3): 4140-4151, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785389

RESUMO

We present a broadband integrated photonic polarization splitter and rotator (PSR) using adiabatically tapered coupled waveguides with subwavelength grating (SWG) claddings. The PSR adiabatically rotates and splits the fundamental transverse-magnetic (TM0) input to the fundamental transverse-electric (TE0) mode in the coupler waveguide, while passing the TE0 input through the same waveguide. The SWGs work as an anisotropic metamaterial and facilitate modal conversions, making the PSR efficient and broadband. We rigorously present our design approaches in each section and show the SWG effect by comparing with and without the SWG claddings. The coupling coefficients in each segment explicitly show a stronger coupling effect when the SWGs are included, confirmed by the coupled-mode theory simulations. The full numerical simulation shows that the SWG-PSR operates at 1500-1750 nm (≈250 nm) wavelengths with an extinction ratio larger than 20 dB, confirmed by the experiment for the 1490-1590 nm range. The insertion losses are below 1.3 dB. Since our PSR is designed based on adiabatical mode evolution, the proposed PSR is expected to be tolerant to fabrication variations and should be broadly applicable to polarization management in photonic integrated circuits.

3.
Opt Lett ; 48(5): 1192-1195, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857246

RESUMO

A photonic Bragg grating is a fundamental building block that reflects the direction of wave propagation through spatial phase modulation and can be implemented using sidewall corrugation. However, due to the asymmetric aspect ratio of a waveguide cross section, typical Bragg gratings exhibit a strong polarization sensitivity. Here, we show that photonic Bragg gratings with cladding asymmetry can enable polarization-independent notch filters by rotating input polarizations. Such Bragg gratings strongly couple transverse electric (TE) and transverse magnetic (TM) modes propagating in opposite directions, filtering the input signal and reflecting the rotated mode. We analyzed this polarization-rotating Bragg grating using the coupled-mode theory and experimentally demonstrated it on a silicon-on-insulator platform. Our device concept is simple to implement and compatible with other platforms, readily available as polarization transparent Bragg components.

4.
Opt Lett ; 48(7): 1662-1665, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221735

RESUMO

Optical delay lines control the flow of light in time, introducing phase and group delays for engineering interferences and ultrashort pulses. Photonic integration of such optical delay lines is essential for chip-scale lightwave signal processing and pulse control. However, typical photonic delay lines based on long spiral waveguides require extensively large chip footprints, ranging from mm2 to cm2 scales. Here we present a scalable, high-density integrated delay line using a skin-depth engineered subwavelength grating waveguide, i.e., an extreme skin-depth (eskid) waveguide. The eskid waveguide suppresses the crosstalk between closely spaced waveguides, significantly saving the chip footprint area. Our eskid-based photonic delay line is easily scalable by increasing the number of turns and should improve the photonic chip integration density.

5.
Anal Bioanal Chem ; 414(13): 3895-3904, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35347355

RESUMO

Traditionally, specific bioreceptors such as antibodies have rapidly identified bacterial species in environmental water samples. However, this method has the disadvantages of requiring an additional process to conjugate or immobilize bioreceptors on the assay platform, which becomes unstable at room temperature. Here, we demonstrate a novel mix-and-match method to identify bacteria species by loading the bacterial samples with simple bacteria interacting components (not bioreceptors), such as lipopolysaccharides, peptidoglycan, and bovine serum albumin, and carboxylated particles, all separately on multiple channels. Neither covalent conjugation nor surface immobilization was necessary. Interactions between bacteria and the above bacteria interacting components resulted in varied surface tension and viscosity, leading to various flow velocities of capillary action through the paper fibers. The smartphone camera and a custom Python code recorded multiple channel flow velocity, each loaded with different bacteria interacting components. A multi-dimensional data set was obtained for a given bacterial species and concentration and used as a machine learning training model. A support vector machine was applied to classify the six bacterial species: Escherichia coli, Salmonella Typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecium, and Bacillus subtilis. Under optimized conditions, the training model predicts the bacterial species with an accuracy of > 85% of the six bacteria species.


Assuntos
Microfluídica , Smartphone , Bacillus subtilis , Escherichia coli , Indicadores e Reagentes , Aprendizado de Máquina
6.
Anal Bioanal Chem ; 414(28): 7957-7965, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36131142

RESUMO

SARS-CoV-2 has mutated many times since the onset of the COVID-19 pandemic, and the omicron is currently the most dominant variant. Determining the specific strain of the virus is beneficial in providing proper care and containment of the disease. We have previously reported a novel method of counting the number of particle immunoagglutination on a paper microfluidic chip using a smartphone-based fluorescence microscope. A single-copy-level detection was demonstrated from clinical saline gargle samples. In this work, we further evaluated two different SARS-CoV-2 monoclonal antibodies to spike vs. nucleocapsid antigens for detecting omicron vs. delta and spike vs. nucleocapsid proteins. The SARS-CoV-2 monoclonal antibody to nucleocapsid proteins could distinguish omicron from delta variants and nucleocapsid from spike proteins. However, such distinction could not be found with the monoclonal antibody to spike proteins, despite the numerous mutations found in spike proteins among variants. This result may suggest a clue to the role of nucleocapsid proteins in recognizing different variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Glicoproteína da Espícula de Coronavírus , Pandemias , Microfluídica , Anticorpos Antivirais , Proteínas do Nucleocapsídeo/genética , Imunoensaio , Anticorpos Monoclonais
7.
Opt Lett ; 46(18): 4490-4493, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525029

RESUMO

We present an ultra-broadband silicon photonic polarization beam splitter (PBS) using adiabatically tapered extreme skin-depth (eskid) waveguides. Highly anisotropic metamaterial claddings of the eskid waveguides suppress the crosstalk of transverse-electric (TE) mode, while the large birefringence of the eskid waveguide efficiently cross-couples the transverse-magnetic (TM) mode. Two eskid waveguides are adiabatically tapered to smoothly translate TM mode to the coupled port via mode evolution while keeping the TE mode in the through port. The tapered cross-section of the eskid PBS was designed numerically, achieving a large bandwidth at 1400-1650 nm with extinction ratios >20dB. We experimentally demonstrated the tapered-eskid PBS and confirmed its broad bandwidth at 1490-1640 nm, limited by laser bandwidth. With its mode evolution, the tapered-eskid PBS is tolerant to fabrication imperfections and should be crucial for controlling polarizations in photonic circuits.

8.
Opt Lett ; 46(9): 2164-2167, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929444

RESUMO

In this Letter, we present a high extinction ratio and compact on-chip polarization beam splitter (PBS), based on an extreme skin-depth (eskid) waveguide. Subwavelength-scale gratings form an effectively anisotropic metamaterial cladding and introduce a large birefringence. The anisotropic dielectric perturbation of the metamaterial cladding suppresses the TE polarization extinction via exceptional coupling, while the large birefringence efficiently cross-couples the TM mode, thus reducing the coupling length. We demonstrated the eskid-PBS on a silicon-on-insulator platform and achieved an ultra-high extinction ratio PBS (${\approx} 60\;{\rm dB} $ for TE and ${\approx} 48\;{\rm dB} $ for TM) with a compact coupling length (${\approx} 14.5\,\,\unicode{x00B5}{\rm m}$). The insertion loss is also negligible (${\lt}{0.6}\;{\rm dB}$). The bandwidth is ${\gt}{80}$ (30) nm for the TE (TM) extinction ratio ${\gt}{20}\;{\rm dB}$. Our ultra-high extinction ratio PBS is crucial in implementing efficient polarization diversity circuits, especially where a high degree of polarization distinguishability is necessary, such as photonic quantum information processing.

9.
Opt Express ; 27(8): 10426-10437, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052902

RESUMO

We present a heterogeneously coupled Si/SiO2/SiN waveguide structure that can achieve extremely high dispersions (> | ± 107| ps · nm-1km-1). A strong mode coupling between the Si and SiN waveguides introduces a normal dispersion to symmetric mode and an anomalous dispersion to anti-symmetric mode, and the large group velocity difference between the two waveguides results in such high dispersions. Geometric parameters of the structure control the peak dispersions and the central wavelength of the mode coupling, and these engineering capabilities are studied numerically. Analytical representations on the heterogeneously coupled waveguides are also introduced and these equations explain the effects of geometric parameters. This extremely dispersive waveguide scheme can be constructed with other material combinations as well and should be of interest in ultrafast signal processing and spectroscopic applications.

10.
Langmuir ; 35(48): 16002-16012, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31423790

RESUMO

Mussel underwater adhesion is a model phenomenon important for the understanding of broader biological adhesion and the development of biomimetic wet adhesives. The catechol moiety of 3,4-dihydroxyphenyl-l-alanine (DOPA) is known to be actively involved in the mechanism of mussel underwater adhesion; however, other underwater adhesion mechanisms are also crucial. The surface forces apparatus (SFA) has often been used to explore the contributions of other mechanisms to mussel underwater adhesion; e.g., recent SFA-based nanomechanical studies have revealed that cation-π interactions, one of the strongest intermolecular interactions in water, are the pivotal interactions of adhesive proteins involved in underwater mussel adhesion. This mini-review surveys recent research on cation-π interactions and their contributions to strong mussel underwater adhesion, shedding light on some biological processes and facilitating the development of biomedical adhesives.


Assuntos
Adesivos/química , Bivalves/fisiologia , Cátions , Adesividade , Animais , Fenômenos Mecânicos , Propriedades de Superfície
11.
Proc Natl Acad Sci U S A ; 113(7): E847-53, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831090

RESUMO

It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation-π interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.


Assuntos
Bivalves/química , Eletrólitos/química , Animais , Propriedades de Superfície
12.
Opt Lett ; 43(12): 2772-2775, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905685

RESUMO

We propose and theoretically investigate a dispersion-engineered Si3N4 microring resonator, based on a cross section containing a partially-etched trench, that supports phase-locked, two-color soliton microcomb states. These soliton states consist of a single circulating intracavity pulse with a modulated envelope that sits on a continuous wave background. Such temporal waveforms produce a frequency comb whose spectrum is spread over two widely-spaced spectral windows, each exhibiting a squared hyperbolic secant envelope, with the two windows phase-locked to each other via Cherenkov radiation. The first spectral window is centered near the 1550 nm pump, while the second spectral window is tailored based on straightforward geometric control, and can be centered as short as 750 nm and as long as 3000 nm. We numerically analyze the robustness of the design to parameter variation, and consider its implications to self-referencing and visible wavelength comb generation.

13.
Opt Express ; 24(2): 773-86, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832462

RESUMO

Parametric optical nonlinearities are usually weak and require both high optical field intensity and phase-matching. Micro/nanophotonics, with strong confinement of light in waveguides of nanometer-scale cross-sections, can provide high field intensity, but is still in need of a solution for phase-matching across a broad bandwidth. In this article, we show that mode-coupling in slot waveguides can engineer the waveguide modal dispersion, and with proper choice of materials, can achieve on-chip broadband second-harmonic phase-matching. A phase-matching bandwidth in the range of 220 nm at mid-infrared can occur for a hetero-slot waveguide consisting of aluminum nitride (AlN) and silicon nitride (SiN). With a high-nonlinearity polymer as cladding material, about 1.76 W(-1)cm(-2) of normalized conversion efficiency in second-harmonic-generation (SHG) and about 23 dB signal gain in degenerate optical parametric amplification (DOPA) can be achieved over a broad bandwidth. An asymmetric-slot waveguide configuration and a thermal tuning scheme are proposed to reduce the fabrication difficulty. This concept of broadband second-harmonic phase-matching can be extended to other nonlinear optical frequency mixing processes, thus expanding the scope of on-chip nonlinear optical applications.

14.
Opt Express ; 24(6): 6532-41, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136843

RESUMO

We present a direct strip-slot waveguide mode coupler without any auxiliary structures. Contrary to popular belief, an apparent mode mismatch between strip and slot waveguide does not deteriorate conversion efficiency. Separated electric and magnetic field distributions in a slot waveguide lead to highly efficient modal coupling in the direct strip-slot coupler and result in high conversion efficiency. Accurate experimental characterization shows that the direct strip-slot waveguide mode coupler is capable of up to 96% conversion efficiency with a broad bandwidth. Being simplest and of high efficiency, the direct strip-slot waveguide mode coupler can encourage potential applications of slot waveguides.

15.
Opt Express ; 23(8): 9968-78, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969038

RESUMO

We present a polarization rotation and coupling scheme that rotates a TE(0) mode in a silicon waveguide and simultaneously couples the rotated mode to a hybrid plasmonic (HP(0)) waveguide mode. Such a polarization rotation can be realized with a partially etched asymmetric hybrid plasmonic waveguide consisting of a silicon strip waveguide, a thin oxide spacer, and a metal cap made from copper, gold, silver or aluminum. Two implementations, one with and one without the tapering of the metal cap are presented, and different taper shapes (linear and exponential) are also analyzed. The devices have large 3 dB conversion bandwidths (over 200 nm at near infrared) and short length (< 5 µm), and achieve a maximum coupling factor of ∼ 78% with a linearly tapered silver metal cap.


Assuntos
Refratometria/instrumentação , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Rotação , Espalhamento de Radiação , Integração de Sistemas
16.
Opt Express ; 22(8): 9508-16, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787839

RESUMO

We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.


Assuntos
Cobre/química , Nanotubos , Refratometria/instrumentação , Semicondutores , Silício/química , Prata/química , Ressonância de Plasmônio de Superfície/instrumentação , Condutividade Elétrica , Desenho de Equipamento
17.
Opt Lett ; 39(19): 5784-7, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360984

RESUMO

We present a metal-dielectric stack ultraviolet (UV) bandpass filter that rejects the longer wavelength, visible spectrum and is thin and relatively insensitive to the angle of incidence. Parametric evaluations of the reflection phase shift at the metal-dielectric interface provide insight and design information. This nontrivial phase shift allows coupled Fabry-Perot resonances with subwavelength dielectric film thickness. Furthermore, the total phase shift, with contributions from wave propagation and nontrivial reflection phase shift, is insensitive to the angle of incidence. Filter passbands in the UV can be shifted to visible or longer wavelengths by engineering the dielectric thickness and selecting a metal with an appropriate plasma frequency.

18.
Biomacromolecules ; 15(5): 1579-85, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24650082

RESUMO

Hydrogel systems based on cross-linked polymeric materials which could provide both adhesion and cohesion in wet environment have been considered as a promising formulation of tissue adhesives. Inspired by marine mussel adhesion, many researchers have tried to exploit the 3,4-dihydroxyphenylalanine (DOPA) molecule as a cross-linking mediator of synthetic polymer-based hydrogels which is known to be able to achieve cohesive hardening as well as adhesive bonding with diverse surfaces. Beside DOPA residue, composition of other amino acid residues and structure of mussel adhesive proteins (MAPs) have also been considered important elements for mussel adhesion. Herein, we represent a novel protein-based hydrogel system using DOPA-containing recombinant MAP. Gelation can be achieved using both oxdiation-induced DOPA quinone-mediated covalent and Fe(3+)-mediated coordinative noncovalent cross-linking. Fe(3+)-mediated hydrogels show deformable and self-healing viscoelastic behavior in rheological analysis, which is also well-reflected in bulk adhesion strength measurement. Quinone-mediated hydrogel has higher cohesive strength and can provide sufficient gelation time for easier handling. Collectively, our newly developed MAP hydrogel can potentially be used as tissue adhesive and sealant for future applications.


Assuntos
Bivalves/química , Di-Hidroxifenilalanina/química , Hidrogéis/química , Proteínas/química , Animais , Estrutura Molecular , Reologia
19.
Small ; 9(22): 3778-83, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-23606576

RESUMO

Metal nanostructures are the main building blocks of metamaterials and plasmonics which show many extraordinary properties not existing in nature. A simple and widely applicable method that can directly pattern metals with silicon molds without the need of resists, using pressures of <4 MPa and temperatures of 25-150 °C is reported. Three-dimensional structures with smooth and vertical sidewalls, down to sub-10 nm resolution, are generated in silver and gold films in a single patterning step. Using this nanopatterning scheme, large-scale vivid images through extraordinary optical transmission and strong surface-enhanced Raman scattering substrates are realized. Resistless nanoimprinting in metal (RNIM) is a new class of metal patterning that allows plasmonic nanostructures to be fabricated quickly, repeatedly, and at a low-cost.

20.
Opt Express ; 21(13): 15081-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842295

RESUMO

We demonstrate high resonant absorption of visible light with a plasmonic nanocavity chain structure fabricated through resistless nanoimprinting in metal (RNIM). The RNIM approach provides a simple, reproducible, and accurate means to fabricate metallic nanopatterns with high fidelity. The nanocavities are shown to be efficiently excited using normally incident light, and the resonant wavelength can be controlled by either the width or the depth of the cavity. Numerical simulations confirm the experimental observations, and illustrate the behavior of the nanocavity chain waveguide and insensitivity to incident angle. The resonant absorption is due to the excitation of a localized metal-insulator-metal cavity mode. The interacting surface waves allow cavity lengths on the order of ten nanometers for light having a free space wavelength of about four hundred nanometers. Coupling of the cavities with an intervening surface plasmon wave results in a collective excitation and a chain waveguide mode that should prove valuable for more sensitive detection based on surface enhanced Raman scattering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA