Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Res ; 100(1): 19-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830380

RESUMO

The actions of endogenous opioids and nociceptin/orphanin FQ are mediated by four homologous G protein-coupled receptors that constitute the opioid receptor family. However, little is known about opioid systems in cyclostomes (living jawless fish) and how opioid systems might have evolved from invertebrates. Here, we leveraged de novo transcriptome and low-coverage whole-genome assembly in the Pacific hagfish (Eptatretus stoutii) to identify and characterize the first full-length coding sequence for a functional opioid receptor in a cyclostome. Additionally, we define two novel endogenous opioid precursors in this species that predict several novel opioid peptides. Bioinformatic analysis shows no closely related opioid receptor genes in invertebrates with regard either to the genomic organization or to conserved opioid receptor-specific sequences that are common in all vertebrates. Furthermore, no proteins analogous to vertebrate opioid precursors could be identified by genomic searches despite previous claims of protein or RNA-derived sequences in several invertebrate species. The presence of an expressed orthologous receptor and opioid precursors in the Pacific hagfish confirms that a functional opioid system was likely present in the common ancestor of all extant vertebrates some 550 million years ago, earlier than all previous authenticated accounts. We discuss the premise that the cyclostome and vertebrate opioid systems evolved from invertebrate systems concerned with antimicrobial defense and speculate that the high concentrations of opioid precursors in tissues such as the testes, gut, and activated immune cells are key remnants of this evolutionary role.


Assuntos
Feiticeiras (Peixe) , Analgésicos Opioides , Animais , Evolução Biológica , Evolução Molecular , Feiticeiras (Peixe)/genética , Peptídeos Opioides , Filogenia
2.
Proc Natl Acad Sci U S A ; 116(19): 9628-9633, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019093

RESUMO

GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One class of major pathogenic molecules in C9ORF72-ALS/FTD is dipeptide repeat proteins such as poly(GR), whose toxicity has been well documented in cellular and animal models. However, it is not known how poly(GR) toxicity can be alleviated, especially in patient neurons. Using Drosophila as a model system in an unbiased genetic screen, we identified a number of genetic modifiers of poly(GR) toxicity. Surprisingly, partial loss of function of Ku80, an essential DNA repair protein, suppressed poly(GR)-induced retinal degeneration in flies. Ku80 expression was greatly elevated in flies expressing poly(GR) and in C9ORF72 iPSC-derived patient neurons. As a result, the levels of phosphorylated ATM and P53 as well as other downstream proapoptotic proteins such as PUMA, Bax, and cleaved caspase-3 were all significantly increased in C9ORF72 patient neurons. The increase in the levels of Ku80 and some downstream signaling proteins was prevented by CRISPR-Cas9-mediated deletion of expanded G4C2 repeats. More importantly, partial loss of function of Ku80 in these neurons through CRISPR/Cas9-mediated ablation or small RNAs-mediated knockdown suppressed the apoptotic pathway. Thus, partial inhibition of the overactivated Ku80-dependent DNA repair pathway is a promising therapeutic approach in C9ORF72-ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Reparo do DNA , Demência Frontotemporal , Autoantígeno Ku , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Drosophila melanogaster , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Sequências Repetitivas de Aminoácidos
3.
Curr Pharm Des ; 21(36): 5256-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412354

RESUMO

Glioblastoma multiforme (GBM) is one of the most challenging diseases to treat in clinical oncology due to its high mortality rates and inefficient conventional treatment methods. Difficulties with early detection, post-surgical recurrences, and resistance to chemotherapy and/or radiotherapy are important reasons for the poor prognosis of those with GBM. Over the past few decades, magnetic resonance (MR) theranostics using magnetic nanoparticles has shown unique advantages and great promises for the diagnosis and treatment of cancers. Magnetic nanoparticles not only serve as "molecular beacons" to enhance tumor contrast in magnetic resonance imaging (MRI), but also serve as "molecular bullets" for targeted drug delivery, controlled release, and induced hyperthermia. Moreover, multiple functions of magnetic nanoparticles can be synergistically engineered into a single nanoplatform, making it possible to simultaneously image, treat, target, and monitor the targeted lesions. The multi-functionality of nanoparticles, also called nano-theranostics, gives rises to effective new approaches for combating GBM. In this work, recent research and progress concerning the applications of MR nano-theranostics on GBM using magnetic nanoparticles will be highlighted, focusing on topics such as diagnosis, therapy, targeting, and hyperthermia, as well as outstanding challenges for MR nanotheranostics in treating GBM. The conclusions are generally applicable to other types of brain tumors.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Nanopartículas de Magnetita , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Glioblastoma/diagnóstico , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA