Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 42(23): 9011-34, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23954955

RESUMO

Li-air(O2) and Li-S batteries have gained much attention recently and most relevant research has aimed to improve the electrochemical performance of air(O2) or sulfur cathode materials. However, many technical problems associated with the Li metal anode have yet to be overcome. This review mainly focuses on the electrochemical behaviors and technical issues related to metallic Li anode materials as well as other metallic anode materials such as alkali (Na) and alkaline earth (Mg) metals, including Zn and Al when these metal anodes were employed for various types of secondary batteries.

2.
ACS Appl Mater Interfaces ; 16(7): 8853-8862, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346852

RESUMO

To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification of graphite, herein we demonstrate the surface decoration with titanium carbide (TiC) nanocrystals onto graphite particles via a simple wet-coating process. The high electrical conductivity, low Li+ adsorption energy, and small surface diffusion barrier of the TiC nanocrystals facilitate fast Li+ adsorption and migration in the graphite surface by reducing the overpotential upon the charging process. The feasibility of the TiC nanocrystal-decorated graphite (TiC@AG) anode is thoroughly examined with an in-depth understanding of the interfacial reaction mechanism. Furthermore, the full-cell with a commercial cathode (LiNi0.8Co0.1Mn0.1O2) and TiC@AG anode demonstrates an impressive capacity retention (94.5%) after 300 cycles under fast-charging condition (3 C-charging and 1 C-discharging) without any sign of Li plating. The charging time of the TiC@AG full-cell was estimated at 16.2 min (80% of state of charge), which is substantially shorter than that of the artificial graphite full-cell. Our findings offer practical insights into the design principles of advanced graphite anodes, contributing to the realization of fast-charging LIBs.

3.
Adv Mater ; 36(5): e2304803, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37589475

RESUMO

The binder is an essential component in determining the structural integrity and ionic conductivity of Li-ion battery electrodes. However, conventional binders are not sufficiently conductive and durable to be used with solid-state electrolytes. In this study, a novel system is proposed for a Li secondary battery that combines the electrolyte and binder into a unified structure, which is achieved by employing para-phenylenediamine (pPD) moiety to create supramolecular bridges between the parent binders. Due to a partial crosslinking effect and charge-transferring structure of pPD, the proposed strategy improves both the ionic conductivity and mechanical properties by a factor of 6.4 (achieving a conductivity of 3.73 × 10-4 S cm-1 for poly(ethylene oxide)-pPD) and 4.4 (reaching a mechanical strength of 151.4 kPa for poly(acrylic acid)-pPD) compared to those of conventional parent binders. As a result, when the supramolecules of pPD are used as a binder in a pouch cell with a lean electrolyte loading of 2 µL mAh-1 , a capacity retention of 80.2% is achieved even after 300 cycles. Furthermore, when it is utilized as a solid-state electrolyte, an average Coulombic efficiency of 99.7% and capacity retention of 98.7% are attained under operations at 50 °C without external pressure or a pre-aging process.

4.
ACS Nano ; 8(3): 2977-85, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24552160

RESUMO

A core-shell structured Si nanoparticles@TiO2-x/C mesoporous microfiber composite has been synthesized by an electrospinning method. The core-shell composite exhibits high reversible capacity, excellent rate capability, and improved cycle performance as an anode material for Li-ion batteries. Furthermore, it shows remarkable suppression of exothermic behavior, which can prevent possible thermal runaway and safety problems of the cells. The improved electrochemical and thermal properties are ascribed to the mechanically, electrically, and thermally robust shell structure of the TiO2-x/C nanocomposite encapsulating the Si nanoparticles, which is suggested as a promising material architecture for a safe and reliable Si-based Li-ion battery of high energy density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA