Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Annu Rev Immunol ; 38: 597-620, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340575

RESUMO

Neuroimmunology, albeit a relatively established discipline, has recently sparked numerous exciting findings on microglia, the resident macrophages of the central nervous system (CNS). This review addresses meningeal immunity, a less-studied aspect of neuroimmune interactions. The meninges, a triple layer of membranes-the pia mater, arachnoid mater, and dura mater-surround the CNS, encompassing the cerebrospinal fluid produced by the choroid plexus epithelium. Unlike the adjacent brain parenchyma, the meninges contain a wide repertoire of immune cells. These constitute meningeal immunity, which is primarily concerned with immune surveillance of the CNS, and-according to recent evidence-also participates in postinjury CNS recovery, chronic neurodegenerative conditions, and even higher brain function. Meningeal immunity has recently come under the spotlight owing to the characterization of meningeal lymphatic vessels draining the CNS. Here, we review the current state of our understanding of meningeal immunity and its effects on healthy and diseased brains.


Assuntos
Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Suscetibilidade a Doenças , Homeostase , Imunidade , Meninges/fisiologia , Animais , Humanos , Vasos Linfáticos/imunologia , Vasos Linfáticos/metabolismo , Neuroimunomodulação , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
Cell ; 186(3): 464-466, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36693375

RESUMO

T cells and their derived cytokines have been shown to modulate brain function. In this issue of Cell, Zhu, Yan, and colleagues demonstrate that opioid use impacts the crosstalk between the CNS and the peripheral immune system. Regulatory T cell (Treg)-derived IFN-γ signaling translates into synaptic weakening in the nucleus accumbens (NAc) to impart withdrawal-induced behavioral dysfunction.


Assuntos
Núcleo Accumbens , Transtornos Relacionados ao Uso de Opioides , Transdução de Sinais , Núcleo Accumbens/fisiologia , Transtornos Relacionados ao Uso de Opioides/patologia , Citocinas
3.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33508229

RESUMO

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Assuntos
Cavidades Cranianas/imunologia , Cavidades Cranianas/fisiologia , Dura-Máter/imunologia , Dura-Máter/fisiologia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos/líquido cefalorraquidiano , Senescência Celular , Quimiocina CXCL12/farmacologia , Dura-Máter/irrigação sanguínea , Feminino , Homeostase , Humanos , Imunidade , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Células Estromais/citologia , Linfócitos T/citologia
4.
Cell ; 182(2): 270-296, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32707093

RESUMO

Mammals have two specialized vascular circulatory systems: the blood vasculature and the lymphatic vasculature. The lymphatic vasculature is a unidirectional conduit that returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays major roles in immune cell trafficking and lipid absorption. As we discuss in this review, the molecular characterization of lymphatic vascular development and our understanding of this vasculature's role in pathophysiological conditions has greatly improved in recent years, changing conventional views about the roles of the lymphatic vasculature in health and disease. Morphological or functional defects in the lymphatic vasculature have now been uncovered in several pathological conditions. We propose that subtle asymptomatic alterations in lymphatic vascular function could underlie the variability seen in the body's response to a wide range of human diseases.


Assuntos
Vasos Linfáticos/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , História do Século XXI , Humanos , Linfonodos/imunologia , Linfonodos/metabolismo , Linfangiogênese , Doenças Linfáticas/genética , Doenças Linfáticas/história , Doenças Linfáticas/patologia , Metástase Linfática , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/citologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
5.
Immunity ; 57(6): 1394-1412.e8, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821054

RESUMO

Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative-region-associated microglia (PAMs) in developing white matter and disease-associated microglia (DAMs) prevalent in various neurodegenerative conditions. PAMs and DAMs share a similar core gene signature. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we generated an inducible Cre driver line, Clec7a-CreERT2, that targets PAMs and DAMs in the brain parenchyma. Utilizing this tool, we profiled labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM and DAM gene expression. Through long-term tracking, we demonstrated microglial state plasticity. Lastly, we specifically depleted DAMs in demyelination, revealing their roles in disease recovery. Together, we provide a versatile genetic tool to characterize microglial states in CNS development and disease.


Assuntos
Plasticidade Celular , Microglia , Remielinização , Microglia/fisiologia , Animais , Camundongos , Plasticidade Celular/genética , Doenças Desmielinizantes/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais de Doenças , Encéfalo , Bainha de Mielina/metabolismo , Substância Branca/patologia
6.
Annu Rev Neurosci ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648267

RESUMO

Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.

7.
Nat Immunol ; 21(11): 1421-1429, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32929273

RESUMO

Interleukin (IL)-17a has been highly conserved during evolution of the vertebrate immune system and widely studied in contexts of infection and autoimmunity. Studies suggest that IL-17a promotes behavioral changes in experimental models of autism and aggregation behavior in worms. Here, through a cellular and molecular characterization of meningeal γδ17 T cells, we defined the nearest central nervous system-associated source of IL-17a under homeostasis. Meningeal γδ T cells express high levels of the chemokine receptor CXCR6 and seed meninges shortly after birth. Physiological release of IL-17a by these cells was correlated with anxiety-like behavior in mice and was partially dependent on T cell receptor engagement and commensal-derived signals. IL-17a receptor was expressed in cortical glutamatergic neurons under steady state and its genetic deletion decreased anxiety-like behavior in mice. Our findings suggest that IL-17a production by meningeal γδ17 T cells represents an evolutionary bridge between this conserved anti-pathogen molecule and survival behavioral traits in vertebrates.


Assuntos
Ansiedade/etiologia , Ansiedade/metabolismo , Interleucina-17/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Ansiedade/psicologia , Comportamento Animal , Proliferação de Células , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Dura-Máter , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interleucina-17/genética , Meninges/imunologia , Meninges/metabolismo , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/genética , Transdução de Sinais , Transcriptoma
8.
Cell ; 169(7): 1172-1174, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622503

RESUMO

The role of microglia in neurodegenerative diseases has been controversial. In this issue, Keren-Shaul et al. identify a unique population of disease-associated microglia (DAM) that develop in two steps and may help to restrict damage in Alzheimer and related diseases.


Assuntos
Microglia , Doenças Neurodegenerativas , Humanos
9.
Immunity ; 55(8): 1448-1465.e6, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931085

RESUMO

Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.


Assuntos
Doença de Alzheimer , Microglia , Envelhecimento , Doença de Alzheimer/genética , Animais , Encéfalo/patologia , Humanos , Macrófagos/patologia , Glicoproteínas de Membrana , Camundongos , Microglia/patologia , Receptores Imunológicos
10.
Nat Immunol ; 24(5): 741-742, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095376
11.
Nature ; 627(8002): 157-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418877

RESUMO

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.


Assuntos
Encéfalo , Líquido Cefalorraquidiano , Líquido Extracelular , Neurônios , Potenciais de Ação , Encéfalo/citologia , Encéfalo/metabolismo , Ondas Encefálicas/fisiologia , Líquido Cefalorraquidiano/metabolismo , Líquido Extracelular/metabolismo , Sistema Glinfático/metabolismo , Cinética , Rede Nervosa/fisiologia , Neurônios/metabolismo , Optogenética , Tecido Parenquimatoso/metabolismo , Íons/metabolismo
12.
Nature ; 627(8002): 165-173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326613

RESUMO

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Assuntos
Aracnoide-Máter , Encéfalo , Dura-Máter , Animais , Humanos , Camundongos , Aracnoide-Máter/anatomia & histologia , Aracnoide-Máter/irrigação sanguínea , Aracnoide-Máter/imunologia , Aracnoide-Máter/metabolismo , Transporte Biológico , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/metabolismo , Dura-Máter/anatomia & histologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Dura-Máter/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Perfilação da Expressão Gênica , Imageamento por Ressonância Magnética , Camundongos Transgênicos , Espaço Subaracnóideo/anatomia & histologia , Espaço Subaracnóideo/irrigação sanguínea , Espaço Subaracnóideo/imunologia , Espaço Subaracnóideo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Veias/metabolismo
13.
Nature ; 615(7953): 668-677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890231

RESUMO

Extracellular deposition of amyloid-ß as neuritic plaques and intracellular accumulation of hyperphosphorylated, aggregated tau as neurofibrillary tangles are two of the characteristic hallmarks of Alzheimer's disease1,2. The regional progression of brain atrophy in Alzheimer's disease highly correlates with tau accumulation but not amyloid deposition3-5, and the mechanisms of tau-mediated neurodegeneration remain elusive. Innate immune responses represent a common pathway for the initiation and progression of some neurodegenerative diseases. So far, little is known about the extent or role of the adaptive immune response and its interaction with the innate immune response in the presence of amyloid-ß or tau pathology6. Here we systematically compared the immunological milieux in the brain of mice with amyloid deposition or tau aggregation and neurodegeneration. We found that mice with tauopathy but not those with amyloid deposition developed a unique innate and adaptive immune response and that depletion of microglia or T cells blocked tau-mediated neurodegeneration. Numbers of T cells, especially those of cytotoxic T cells, were markedly increased in areas with tau pathology in mice with tauopathy and in the Alzheimer's disease brain. T cell numbers correlated with the extent of neuronal loss, and the cells dynamically transformed their cellular characteristics from activated to exhausted states along with unique TCR clonal expansion. Inhibition of interferon-γ and PDCD1 signalling both significantly ameliorated brain atrophy. Our results thus reveal a tauopathy- and neurodegeneration-related immune hub involving activated microglia and T cell responses, which could serve as therapeutic targets for preventing neurodegeneration in Alzheimer's disease and primary tauopathies.


Assuntos
Encéfalo , Microglia , Emaranhados Neurofibrilares , Linfócitos T , Tauopatias , Animais , Camundongos , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Microglia/imunologia , Microglia/metabolismo , Emaranhados Neurofibrilares/imunologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Proteínas tau/imunologia , Proteínas tau/metabolismo , Tauopatias/imunologia , Tauopatias/metabolismo , Tauopatias/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Placa Amiloide/imunologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Células Clonais/imunologia , Células Clonais/metabolismo , Células Clonais/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Imunidade Inata
14.
Nature ; 612(7940): 417-429, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517712

RESUMO

The concept of immune privilege suggests that the central nervous system is isolated from the immune system. However, recent studies have highlighted the borders of the central nervous system as central sites of neuro-immune interactions. Although the nervous and immune systems both function to maintain homeostasis, under rare circumstances, they can develop pathological interactions that lead to neurological or psychiatric diseases. Here we discuss recent findings that dissect the key anatomical, cellular and molecular mechanisms that enable neuro-immune responses at the borders of the brain and spinal cord and the implications of these interactions for diseases of the central nervous system.


Assuntos
Encéfalo , Sistema Imunitário , Neuroimunomodulação , Encéfalo/imunologia , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Sistema Imunitário/imunologia , Sistema Imunitário/fisiologia , Sistema Imunitário/fisiopatologia , Neuroimunomodulação/imunologia , Neuroimunomodulação/fisiologia , Medula Espinal/imunologia , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Humanos , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/psicologia
15.
Nature ; 611(7936): 585-593, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352225

RESUMO

Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.


Assuntos
Sistema Nervoso Central , Líquido Cefalorraquidiano , Macrófagos , Tecido Parenquimatoso , Animais , Camundongos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Líquido Cefalorraquidiano/metabolismo , Macrófagos/fisiologia , Meninges/citologia , Reologia , Proteínas da Matriz Extracelular/metabolismo , Envelhecimento/metabolismo , Fagocitose , Endocitose , Interferon gama/metabolismo , Tecido Parenquimatoso/citologia , Humanos
16.
Trends Immunol ; 45(5): 329-337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600001

RESUMO

Neurodegenerative disorders present major challenges to global health, exacerbated by an aging population and the absence of therapies. Despite diverse pathological manifestations, they share a common hallmark, loosely termed 'neuroinflammation'. The prevailing dogma is that the immune system is an active contributor to neurodegeneration; however, recent evidence challenges this. By analogy with road construction, which causes temporary closures and disruptions, the immune system's actions in the central nervous system (CNS) might initially appear destructive, and might even cause harm, while aiming to combat neurodegeneration. We propose that the application of cellular immunotherapies to coordinate the immune response towards remodeling might pave the way for new modes of tackling the roadblocks of neurodegenerative diseases.


Assuntos
Imunoterapia , Doenças Neurodegenerativas , Animais , Humanos , Sistema Nervoso Central/imunologia , Imunoterapia/métodos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/imunologia
17.
Immunity ; 48(2): 380-395.e6, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29426702

RESUMO

Individual reports suggest that the central nervous system (CNS) contains multiple immune cell types with diverse roles in tissue homeostasis, immune defense, and neurological diseases. It has been challenging to map leukocytes across the entire brain, and in particular in pathology, where phenotypic changes and influx of blood-derived cells prevent a clear distinction between reactive leukocyte populations. Here, we applied high-dimensional single-cell mass and fluorescence cytometry, in parallel with genetic fate mapping systems, to identify, locate, and characterize multiple distinct immune populations within the mammalian CNS. Using this approach, we revealed that microglia, several subsets of border-associated macrophages and dendritic cells coexist in the CNS at steady state and exhibit disease-specific transformations in the immune microenvironment during aging and in models of Alzheimer's disease and multiple sclerosis. Together, these data and the described framework provide a resource for the study of disease mechanisms, potential biomarkers, and therapeutic targets in CNS disease.


Assuntos
Envelhecimento/imunologia , Sistema Nervoso Central/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Animais , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/imunologia , Análise de Célula Única
18.
PLoS Biol ; 22(5): e3002596, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718086

RESUMO

Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.


Assuntos
Transtorno do Espectro Autista , Cílios , Epêndima , Camundongos Knockout , Fenótipo , Animais , Masculino , Camundongos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Cílios/metabolismo , Modelos Animais de Doenças , Epêndima/metabolismo , Hipocampo/metabolismo , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Hidrocefalia/fisiopatologia , Katanina/metabolismo , Katanina/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Sinapses/metabolismo , Transcriptoma/genética
19.
Nature ; 593(7858): 255-260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33911285

RESUMO

Alzheimer's disease (AD) is the most prevalent cause of dementia1. Although there is no effective treatment for AD, passive immunotherapy with monoclonal antibodies against amyloid beta (Aß) is a promising therapeutic strategy2,3. Meningeal lymphatic drainage has an important role in the accumulation of Aß in the brain4, but it is not known whether modulation of meningeal lymphatic function can influence the outcome of immunotherapy in AD. Here we show that ablation of meningeal lymphatic vessels in 5xFAD mice (a mouse model of amyloid deposition that expresses five mutations found in familial AD) worsened the outcome of mice treated with anti-Aß passive immunotherapy by exacerbating the deposition of Aß, microgliosis, neurovascular dysfunction, and behavioural deficits. By contrast, therapeutic delivery of vascular endothelial growth factor C improved clearance of Aß by monoclonal antibodies. Notably, there was a substantial overlap between the gene signature of microglia from 5xFAD mice with impaired meningeal lymphatic function and the transcriptional profile of activated microglia from the brains of individuals with AD. Overall, our data demonstrate that impaired meningeal lymphatic drainage exacerbates the microglial inflammatory response in AD and that enhancement of meningeal lymphatic function combined with immunotherapies could lead to better clinical outcomes.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoterapia , Vasos Linfáticos/imunologia , Meninges/imunologia , Microglia/imunologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/imunologia , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Anticorpos Monoclonais Humanizados/imunologia , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Modelos Animais de Doenças , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Masculino , Meninges/irrigação sanguínea , Meninges/citologia , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia
20.
Immunity ; 46(6): 943-956, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636961

RESUMO

The central nervous system (CNS) and its meningeal coverings accommodate a diverse myeloid compartment that includes parenchymal microglia and perivascular macrophages, as well as choroid plexus and meningeal macrophages, dendritic cells, and granulocytes. These myeloid populations enjoy an intimate relationship with the CNS, where they play an essential role in both health and disease. Although the importance of these cells is clearly recognized, their exact function in the CNS continues to be explored. Here, we review the subsets of myeloid cells that inhabit the parenchyma, meninges, and choroid plexus and discuss their roles in CNS homeostasis. We also discuss the role of these cells in various neurological pathologies, such as autoimmunity, mechanical injury, neurodegeneration, and infection. We highlight the neuroprotective nature of certain myeloid cells by emphasizing their therapeutic potential for the treatment of neurological conditions.


Assuntos
Doenças Autoimunes/imunologia , Plexo Corióideo/imunologia , Infecções/imunologia , Células Mieloides/fisiologia , Doenças Neurodegenerativas/imunologia , Neuroimunomodulação , Ferimentos e Lesões/imunologia , Animais , Sistema Nervoso Central , Humanos , Meninges/imunologia , Neuroproteção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA