RESUMO
Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.
Assuntos
Miocárdio/metabolismo , Biossíntese de Proteínas , Adolescente , Adulto , Idoso , Animais , Códon/genética , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fases de Leitura Aberta/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ribossomos/genética , Ribossomos/metabolismo , Adulto JovemRESUMO
Venous thromboembolism (VTE) is a common, deadly disease with an increasing incidence despite preventive efforts. Clinical observations have associated elevated antibody concentrations or antibody-based therapies with thrombotic events. However, how antibodies contribute to thrombosis is unknown. Here, we show that reduced blood flow enabled immunoglobulin M (IgM) to bind to FcµR and the polymeric immunoglobulin receptor (pIgR), initiating endothelial activation and platelet recruitment. Subsequently, the procoagulant surface of activated platelets accommodated antigen- and FcγR-independent IgG deposition. This leads to classical complement activation, setting in motion a prothrombotic vicious circle. Key elements of this mechanism were present in humans in the setting of venous stasis as well as in the dysregulated immunothrombosis of COVID-19. This antibody-driven thrombosis can be prevented by pharmacologically targeting complement. Hence, our results uncover antibodies as previously unrecognized central regulators of thrombosis. These findings carry relevance for therapeutic application of antibodies and open innovative avenues to target thrombosis without compromising hemostasis.
Assuntos
Plaquetas , COVID-19 , Ativação do Complemento , Imunoglobulina M , Trombose , Humanos , Trombose/imunologia , Animais , Imunoglobulina M/imunologia , Ativação do Complemento/imunologia , Camundongos , Plaquetas/imunologia , Plaquetas/metabolismo , COVID-19/imunologia , COVID-19/complicações , SARS-CoV-2/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Ativação Plaquetária/imunologia , Imunoglobulina G/imunologia , MasculinoRESUMO
Many disease-causing missense mutations affect intrinsically disordered regions (IDRs) of proteins, but the molecular mechanism of their pathogenicity is enigmatic. Here, we employ a peptide-based proteomic screen to investigate the impact of mutations in IDRs on protein-protein interactions. We find that mutations in disordered cytosolic regions of three transmembrane proteins (GLUT1, ITPR1, and CACNA1H) lead to an increased clathrin binding. All three mutations create dileucine motifs known to mediate clathrin-dependent trafficking. Follow-up experiments on GLUT1 (SLC2A1), the glucose transporter causative of GLUT1 deficiency syndrome, revealed that the mutated protein mislocalizes to intracellular compartments. Mutant GLUT1 interacts with adaptor proteins (APs) in vitro, and knocking down AP-2 reverts the cellular mislocalization and restores glucose transport. A systematic analysis of other known disease-causing variants revealed a significant and specific overrepresentation of gained dileucine motifs in structurally disordered cytosolic domains of transmembrane proteins. Thus, several mutations in disordered regions appear to cause "dileucineopathies."
Assuntos
Transportador de Glucose Tipo 1/fisiologia , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/fisiologia , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/fisiologia , Erros Inatos do Metabolismo dos Carboidratos , Clatrina/metabolismo , Citoplasma/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Leucina/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte de Monossacarídeos/deficiência , Mutação/genética , Peptídeos , Ligação Proteica , Proteômica/métodosRESUMO
All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.
Assuntos
Peptídeos , Biossíntese de Proteínas , Humanos , Fases de Leitura Aberta , Peptídeos/genética , Proteômica , MicropeptídeosRESUMO
Sensitization of the capsaicin receptor TRPV1 is central to the initiation of pathological forms of pain, and multiple signaling cascades are known to enhance TRPV1 activity under inflammatory conditions. How might detrimental escalation of TRPV1 activity be counteracted? Using a genetic-proteomic approach, we identify the GABAB1 receptor subunit as bona fide inhibitor of TRPV1 sensitization in the context of diverse inflammatory settings. We find that the endogenous GABAB agonist, GABA, is released from nociceptive nerve terminals, suggesting an autocrine feedback mechanism limiting TRPV1 sensitization. The effect of GABAB on TRPV1 is independent of canonical G protein signaling and rather relies on close juxtaposition of the GABAB1 receptor subunit and TRPV1. Activating the GABAB1 receptor subunit does not attenuate normal functioning of the capsaicin receptor but exclusively reverts its sensitized state. Thus, harnessing this mechanism for anti-pain therapy may prevent adverse effects associated with currently available TRPV1 blockers.
Assuntos
Comunicação Autócrina , Neurônios/metabolismo , Dor/metabolismo , Receptores de GABA-B/metabolismo , Canais de Cátion TRPV/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Células Cultivadas , Retroalimentação , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
B cell receptor (BCR) signaling is required for the survival and maturation of B cells and is deregulated in B cell lymphomas. While proximal BCR signaling is well studied, little is known about the crosstalk of downstream effector pathways, and a comprehensive quantitative network analysis of BCR signaling is missing. Here, we semi-quantitatively modelled BCR signaling in Burkitt lymphoma (BL) cells using systematically perturbed phosphorylation data of BL-2 and BL-41 cells. The models unveiled feedback and crosstalk structures in the BCR signaling network, including a negative crosstalk from p38 to MEK/ERK. The relevance of the crosstalk was verified for BCR and CD40 signaling in different BL cells and confirmed by global phosphoproteomics on ERK itself and known ERK target sites. Compared to the starting network, the trained network for BL-2 cells was better transferable to BL-41 cells. Moreover, the BL-2 network was also suited to model BCR signaling in Diffuse large B cell lymphoma cells lines with aberrant BCR signaling (HBL-1, OCI-LY3), indicating that BCR aberration does not cause a major downstream rewiring.
Assuntos
Linfoma de Células B , Receptores de Antígenos de Linfócitos B , Transdução de Sinais , Humanos , Receptores de Antígenos de Linfócitos B/metabolismo , Linhagem Celular Tumoral , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Biologia Computacional , Modelos Biológicos , FosforilaçãoRESUMO
Pancreatic ductal adenocarcinoma (PDAC) remains a particularly aggressive disease with few effective treatments. The PDAC tumor immune microenvironment (TIME) is known to be immune suppressive. Oncolytic viruses can increase tumor immunogenicity via immunogenic cell death (ICD). We focused on tumor-selective (vvDD) and cytokine-armed Western-reserve vaccinia viruses (vvDD-IL2 and vvDD-IL15) and infected carcinoma cell lines as well as patient-derived primary PDAC cells. In co-culture experiments, we investigated the cytotoxic response and the activation of human natural killer (NK). Infection and virus replication were assessed by measuring virus encoded YFP. We then analyzed intracellular signaling processes and oncolysis via in-depth proteomic analysis, immunoblotting and TUNEL assay. Following the co-culture of mock or virus infected carcinoma cell lines with allogenic PBMCs or NK cell lines, CD56+ NK cells were analyzed with respect to their activation, cytotoxicity and effector function. Both, dose- and time-dependent release of danger signals following infection were measured. Viruses effectively entered PDAC cells, emitted YFP signals and resulted in concomitant oncolysis. The proteome showed reprogramming of normally active core signaling pathways in PDAC (e.g., MAPK-ERK signaling). Danger-associated molecular patterns were released upon infection and stimulated co-cultured NK cells for enhanced effector cytotoxicity. NK cell subtyping revealed enhanced numbers and activation of a rare CD56dimCD16dim population. Tumor cell killing was primarily triggered via Fas ligands rather than granule release, resulting in marked apoptosis. Overall, the cytokine-armed vaccinia viruses induced NK cell activation and enhanced cytotoxicity toward human PDAC cells in vitro. We could show that cytokine-armed virus targets the carcinoma cells and thus has great potential to modulate the TIME in PDAC.
RESUMO
BACKGROUND: Recent studies demonstrated that the triple combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) improves lung function and reduces pulmonary exacerbations in cystic fibrosis (CF) patients with at least one F508del allele. However, effects of ETI on downstream consequences of CFTR dysfunction, i.e. abnormal viscoelastic properties of airway mucus, chronic airway infection and inflammation have not been studied. The aim of this study was to determine the longitudinal effects of ETI on airway mucus rheology, microbiome and inflammation in CF patients with one or two F508del alleles aged ≥12â years throughout the first 12â months of therapy. METHODS: In this prospective observational study, we assessed sputum rheology, the microbiome, inflammation markers and proteome before and 1, 3 and 12â months after initiation of ETI. RESULTS: In total, 79 patients with CF and at least one F508del allele and 10 healthy controls were enrolled in this study. ETI improved the elastic modulus and viscous modulus of CF sputum at 3 and 12â months after initiation (all p<0.01). Furthermore, ETI decreased the relative abundance of Pseudomonas aeruginosa in CF sputum at 3â months and increased the microbiome α-diversity at all time points. In addition, ETI reduced interleukin-8 at 3â months (p<0.05) and free neutrophil elastase activity at all time points (all p<0.001), and shifted the CF sputum proteome towards healthy. CONCLUSIONS: Our data demonstrate that restoration of CFTR function by ETI improves sputum viscoelastic properties, chronic airway infection and inflammation in CF patients with at least one F508del allele over the first 12â months of therapy; however, levels close to healthy were not reached.
Assuntos
Fibrose Cística , Humanos , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Escarro , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteoma , MutaçãoRESUMO
BACKGROUND: Many heart diseases can result in reduced pumping capacity of the heart muscle. A mismatch between ATP demand and ATP production of cardiomyocytes is one of the possible causes. Assessment of the relation between myocardial ATP production (MVATP) and cardiac workload is important for better understanding disease development and choice of nutritional or pharmacologic treatment strategies. Because there is no method for measuring MVATP in vivo, the use of physiology-based metabolic models in conjunction with protein abundance data is an attractive approach. METHOD: We developed a comprehensive kinetic model of cardiac energy metabolism (CARDIOKIN1) that recapitulates numerous experimental findings on cardiac metabolism obtained with isolated cardiomyocytes, perfused animal hearts, and in vivo studies with humans. We used the model to assess the energy status of the left ventricle of healthy participants and patients with aortic stenosis and mitral valve insufficiency. Maximal enzyme activities were individually scaled by means of protein abundances in left ventricle tissue samples. The energy status of the left ventricle was quantified by the ATP consumption at rest (MVATP[rest]), at maximal workload (MVATP[max]), and by the myocardial ATP production reserve, representing the span between MVATP(rest) and MVATP(max). RESULTS: Compared with controls, in both groups of patients, MVATP(rest) was increased and MVATP(max) was decreased, resulting in a decreased myocardial ATP production reserve, although all patients had preserved ejection fraction. The variance of the energetic status was high, ranging from decreased to normal values. In both patient groups, the energetic status was tightly associated with mechanic energy demand. A decrease of MVATP(max) was associated with a decrease of the cardiac output, indicating that cardiac functionality and energetic performance of the ventricle are closely coupled. CONCLUSIONS: Our analysis suggests that the ATP-producing capacity of the left ventricle of patients with valvular dysfunction is generally diminished and correlates positively with mechanical energy demand and cardiac output. However, large differences exist in the energetic state of the myocardium even in patients with similar clinical or image-based markers of hypertrophy and pump function. Registration: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT03172338 and NCT04068740.
Assuntos
Trifosfato de Adenosina/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Ventrículos do Coração/metabolismo , Modelos Cardiovasculares , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Animal studies show a pivotal role of dihydrotestosterone (DHT) in pressure overload-induced myocardial hypertrophy and dysfunction. The aim of our study was to evaluate the role of DHT levels and myocardial hypertrophy and myocardial protein expression in patients with severe aortic valve stenosis (AS). Forty-three patients [median age 68 (41-80) yr] with severe AS and indication for surgical aortic valve replacement (SAVR) were prospectively enrolled. Cardiac magnetic resonance imaging including analysis of left ventricular muscle mass (LVM), fibrosis and function, and laboratory tests including serum DHT levels were performed before and after SAVR. During SAVR, left ventricular (LV) biopsies were performed for proteomic profiling. Serum DHT levels correlated positively with indexed LVM (LVMi, R = 0.64, P = 0.0001) and fibrosis (R = 0.49, P = 0.0065) and inversely with LV function (R = -0.42, P = 0.005) in patients with severe AS. DHT levels were associated with higher abundance of the hypertrophy (moesin, R = 0.52, P = 0.0083)- and fibrosis (vimentin, R = 0.41, P = 0.039)-associated proteins from LV myocardial biopsies. Higher serum DHT levels preoperatively were associated with reduced LV function (ejection fraction, R = -0.34, P = 0.035; circulatory efficiency, R = -0.46, P = 0.012; and global longitudinal strain, R = 0.49, P = 0.01) and increased fibrosis (R = 0.55, P = 0.0022) after SAVR. Serum DHT levels were associated with adverse myocardial remodeling and higher abundance in hypertrophy- and fibrosis-associated proteins in patients with severe AS. DHT may be a target to prevent or attenuate adverse myocardial remodeling in patients with pressure overload due to AS.NEW & NOTEWORTHY Serum dihydrotestosterone (DHT) levels correlated positively with the degree of hypertrophy, fibrosis, and dysfunction from cardiac magnetic resonance imaging in female and male patients with aortic valve stenosis. Left ventricular proteome profiling had been performed in this patient cohort and an association between serum DHT levels and the abundance of the hypertrophy-associated protein moesin and the fibrosis-associated protein vimentin was found.
Assuntos
Estenose da Valva Aórtica , Implante de Prótese de Valva Cardíaca , Masculino , Feminino , Humanos , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Valva Aórtica/patologia , Vimentina , Di-Hidrotestosterona , Proteômica , Remodelação Ventricular , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/complicações , Função Ventricular Esquerda , Implante de Prótese de Valva Cardíaca/métodos , Fibrose , Hipertrofia/complicações , Hipertrofia/patologia , Hipertrofia/cirurgiaRESUMO
Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of age-related disability worldwide, mainly due to pain, the disease's main symptom. Although OA was initially classified as a non-inflammatory joint disease, recent attention has been drawn to the importance of synovitis and fibroblast-like synoviocytes (FLS) in the pathogenesis of OA. FLS can be divided into two major populations: thymus cell antigen 1 (THY1)- FLS are currently classified as quiescent cells and assumed to destroy bone and cartilage, whereas THY1+ FLS are invasively proliferative cells that drive synovitis. Both THY1- and THY1+ FLS share many characteristics with fibroblast-like progenitors - mesenchymal stromal cells (MSC). However, it remains unclear whether synovitis-induced metabolic changes exist in FLS from OA patients and whether metabolic differences may provide a mechanistic basis for the identification of approaches to precisely convert the pathologically proliferative synovitis-driven FLS phenotype into a healthy one. To identify novel pathological mechanisms of the perpetuation and manifestation of OA, we analyzed metabolic, proteomic, and functional characteristics of THY1+ FLS from patients with OA. Proteome data and pathway analysis revealed that an elevated expression of pyruvate dehydrogenase kinase (PDK) 3 was characteristic of proliferative THY1+ FLS from patients with OA. These FLS also had the highest podoplanin (PDPN) expression and localized to the sublining but also the lining layer in OA synovium in contrast to the synovium of ligament trauma patients. Inhibition of PDKs reprogrammed metabolism from glycolysis towards oxidative phosphorylation and reduced FLS proliferation and inflammatory cytokine secretion. This study provides new mechanistic insights into the importance of FLS metabolism in the pathogenesis of OA. Given the selective overexpression of PDK3 in OA synovium and its restricted distribution in synovial tissue from ligament trauma patients and MSC, PDKs may represent attractive selective metabolic targets for OA treatment. Moreover, targeting PDKs does not affect cells in a homeostatic, oxidative state. Our data provide an evidence-based rationale for the idea that inhibition of PDKs could restore the healthy THY1+ FLS phenotype. This approach may mitigate the progression of OA and thereby fundamentally change the clinical management of OA from the treatment of symptoms to addressing causes.
Assuntos
Osteoartrite , Sinovite , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Oxirredutases/metabolismo , Proteômica , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvatos/metabolismo , Sinovite/metabolismo , Sinovite/patologiaRESUMO
BACKGROUND: The SCF/KIT axis regulates nearly all aspects of mast cell (MC) biology. A comprehensive view of SCF-triggered phosphorylation dynamics is lacking. The relationship between signaling modules and SCF-supported functions likewise remains ill-defined. METHODS: Mast cells were isolated from human skin; upon stimulation by SCF, global phosphoproteomic changes were analyzed by LC-MS/MS and selectively validated by immunoblotting. MC survival was inspected by YoPro; BrdU incorporation served to monitor proliferation. Gene expression was quantified by RT-qPCR and cytokines by ELISA. Pharmacological inhibitors were supplemented by ERK1 and/or ERK2 knockdown. CIC translocation and degradation were studied in nuclear and cytoplasmic fractions. CIC's impact on KIT signaling and function was assessed following RNA interference. RESULTS: ≈5400 out of ≈10,500 phosphosites experienced regulation by SCF. The MEK/ERK cascade was strongly induced surpassing STAT5 > PI3K/Akt > p38 > JNK. Comparison between MEK/ERK's and PI3K's support of basic programs (apoptosis, proliferation) revealed equipotency between modules. In functional outputs (gene expression, cytokines), ERK was the most influential kinase. OSM and LIF production was identified in skin MCs. Strikingly, SCF triggered massive phosphorylation of a protein not associated with KIT previously: CIC. Phosphorylation was followed by CIC's cytoplasmic appearance and degradation, the latter sensitive to protease but not preoteasome inhibition. Both shuttling and degradation were ERK-dependent. Conversely, CIC-siRNA facilitated KIT signaling, functional outputs, and survival. CONCLUSION: The SCF/KIT axis shows notable strength in MCs, and MEK/ERK as most prominent module. An inhibitory circuit exists between KIT and CIC. CIC stabilization in MCs may turn out as a therapeutic option to interfere with allergic and MC-driven diseases.
Assuntos
Mastócitos , Fator de Células-Tronco , Humanos , Cromatografia Líquida , Citocinas/metabolismo , Mastócitos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Fator de Células-Tronco/farmacologia , Fator de Células-Tronco/metabolismo , Espectrometria de Massas em Tandem , MAP Quinases Reguladas por Sinal Extracelular/metabolismoRESUMO
Adenine nucleotides represent crucial immunomodulators in the extracellular environment. The ectonucleotidases CD39 and CD73 are responsible for the sequential catabolism of ATP to adenosine via AMP, thus promoting an anti-inflammatory milieu induced by the "adenosine halo". AMPD2 intracellularly mediates AMP deamination to IMP, thereby both enhancing the degradation of inflammatory ATP and reducing the formation of anti-inflammatory adenosine. Here, we show that this enzyme is expressed on the surface of human immune cells and its predominance may modify inflammatory states by altering the extracellular milieu. Surface AMPD2 (eAMPD2) expression on monocytes was verified by immunoblot, surface biotinylation, mass spectrometry, and immunofluorescence microscopy. Flow cytometry revealed enhanced monocytic eAMPD2 expression after TLR stimulation. PBMCs from patients with rheumatoid arthritis displayed significantly higher levels of eAMPD2 expression compared with healthy controls. Furthermore, the product of AMPD2-IMP-exerted anti-inflammatory effects, while the levels of extracellular adenosine were not impaired by an increased eAMPD2 expression. In summary, our study identifies eAMPD2 as a novel regulator of the extracellular ATP-adenosine balance adding to the immunomodulatory CD39-CD73 system.
Assuntos
5'-Nucleotidase/metabolismo , AMP Desaminase/metabolismo , Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Leucócitos/metabolismo , Apirase , Células Cultivadas , Proteínas Ligadas por GPI/metabolismo , HumanosRESUMO
Unspecific antibody binding takes a significant toll on researchers in the form of both the economic burden and the disappointed hopes of promising new therapeutic targets. Despite recent initiatives promoting antibody validation, a uniform approach addressing this issue has not yet been developed. Here, we demonstrate that the anti-glucocorticoid receptor (GR) antibody clone 5E4 predominantly targets two different proteins of approximately the same size, namely AMP deaminase 2 (AMPD2) and transcription intermediary factor 1-beta (TRIM28). This paper is intended to generate awareness of unspecific binding of well-established reagents and advocate the use of more rigorous verification methods to improve antibody quality in the future.
Assuntos
Receptores de Glucocorticoides , Fatores de Transcrição , Células Cultivadas , Células Clonais/metabolismo , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Our current knowledge about the mechanisms of miRNA silencing is restricted to few lineages such as vertebrates, arthropods, nematodes and land plants. miRNA-mediated silencing in bilaterian animals is dependent on the proteins of the GW182 family. Here, we dissect the function of GW182 protein in the cnidarian Nematostella, separated by 600 million years from other Metazoa. Using cultured human cells, we show that Nematostella GW182 recruits the CCR4-NOT deadenylation complexes via its tryptophan-containing motifs, thereby inhibiting translation and promoting mRNA decay. Further, similarly to bilaterians, GW182 in Nematostella is recruited to the miRNA repression complex via interaction with Argonaute proteins, and functions downstream to repress mRNA. Thus, our work suggests that this mechanism of miRNA-mediated silencing was already active in the last common ancestor of Cnidaria and Bilateria.
Assuntos
Evolução Molecular , Inativação Gênica , MicroRNAs/genética , Interferência de RNA , Animais , Linhagem Celular , Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/genéticaRESUMO
The oocyte-to-embryo transition (OET) is thought to be mainly driven by post-transcriptional gene regulation. However, expression of both RNAs and proteins during the OET has not been comprehensively assayed. Furthermore, specific molecular mechanisms that regulate gene expression during OET are largely unknown. Here, we quantify and analyze transcriptome-wide, expression of mRNAs and thousands of proteins in Caenorhabditis elegans oocytes, 1-cell, and 2-cell embryos. This represents a first comprehensive gene expression atlas during the OET in animals. We discovered a first wave of degradation in which thousands of mRNAs are cleared shortly after fertilization. Sequence analysis revealed a statistically highly significant presence of a polyC motif in the 3' untranslated regions of most of these degraded mRNAs. Transgenic reporter assays demonstrated that this polyC motif is required and sufficient for mRNA degradation after fertilization. We show that orthologs of human polyC-binding protein specifically bind this motif. Our data suggest a mechanism in which the polyC motif and binding partners direct degradation of maternal mRNAs. Our data also indicate that endogenous siRNAs but not miRNAs promote mRNA clearance during the OET.
Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Oócitos/fisiologia , Estabilidade de RNA , Regiões 3' não Traduzidas , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Feminino , Fertilização/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Poli C , Proteoma/metabolismo , RNA Mensageiro Estocado/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoAssuntos
Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Proteômica/normas , Software , Humanos , InternetRESUMO
Rheumatoid arthritis (RA) and osteoarthritis (OA) are prevalent inflammatory joint diseases characterized by synovitis, cartilage, and bone destruction. Fibroblast-like synoviocytes (FLSs) of the synovial membrane are a decisive factor in arthritis, making them a target for future therapies. Developing novel strategies targeting FLSs requires advanced in vitro joint models that accurately replicate non-diseased joint tissue. This study aims to identify a cell source reflecting physiological synovial fibroblasts. Therefore, we newly compared the phenotype and metabolism of "healthy" knee-derived FLSs from patients with ligament injuries (trauma-FLSs) to mesenchymal stromal cells (MSCs), their native precursors. We differentiated MSCs into fibroblasts using connective tissue growth factor (CTGF) and compared selected protein and gene expression patterns to those obtained from trauma-FLSs and OA-FLSs. Based on these findings, we explored the potential of an MSC-derived synovial tissue model to simulate a chronic inflammatory response akin to that seen in arthritis. We have identified MSCs as a suitable cell source for synovial tissue engineering because, despite metabolic differences, they closely resemble human trauma-derived FLSs. CTGF-mediated differentiation of MSCs increased HAS2 expression, essential for hyaluronan synthesis. It showed protein expression patterns akin to OA-FLSs, including markers of ECM components and fibrosis, and enzymes leading to a shift in metabolism towards increased fatty acid oxidation. In general, cytokine stimulation of MSCs in a synovial tissue model induced pro-inflammatory and pro-angiogenic gene expression, hyperproliferation, and increased glucose consumption, reflecting cellular response in human arthritis. We conclude that MSCs can serve as a proxy to study physiological synovial processes and inflammatory responses. In addition, CTGF-mediated mesenchymal-to-fibroblast transition resembles OA-FLSs. Thus, we emphasize MSCs as a valuable cell source for tools in preclinical drug screening and their application in tissue engineering.
RESUMO
AIMS: Mutation of the PRDM16 gene causes human dilated and non-compaction cardiomyopathy. The PRDM16 protein is a transcriptional regulator that affects cardiac development via Tbx5 and Hand1, thus regulating myocardial structure. The biallelic inactivation of Prdm16 induces severe cardiac dysfunction with post-natal lethality and hypertrophy in mice. The early pathological events that occur upon Prdm16 inactivation have not been explored. METHODS AND RESULTS: This study performed in-depth pathophysiological and molecular analyses of male and female Prdm16csp1/wt mice that carry systemic, monoallelic Prdm16 gene inactivation. We systematically assessed early molecular changes through transcriptomics, proteomics, and metabolomics. Kinetic modelling of cardiac metabolism was performed in silico with CARDIOKIN. Prdm16csp1/wt mice are viable up to 8 months, develop hypoplastic hearts, and diminished systolic performance that is more pronounced in female mice. Prdm16csp1/wt cardiac tissue of both sexes showed reductions in metabolites associated with amino acid as well as glycerol metabolism, glycolysis, and the tricarboxylic acid cycle. Prdm16csp1/wt cardiac tissue revealed diminished glutathione (GSH) and increased inosine monophosphate (IMP) levels indicating oxidative stress and a dysregulated energetics, respectively. An accumulation of triacylglycerides exclusively in male Prdm16csp1/wt hearts suggests a sex-specific metabolic adaptation. Metabolic modelling using CARDIOKIN identified a reduction in fatty acid utilization in males as well as lower glucose utilization in female Prdm16csp1/wt cardiac tissue. On the level of transcripts and protein expression, Prdm16csp1/wt hearts demonstrate an up-regulation of pyridine nucleotide-disulphide oxidoreductase domain 2 (Pyroxd2) and the transcriptional regulator pre-B-cell leukaemia transcription factor interacting protein 1 (Pbxip1). The strongest concordant transcriptional up-regulation was detected for Prdm16 itself, probably through an autoregulatory mechanism. CONCLUSIONS: Monoallelic, global Prdm16 mutation diminishes cardiac performance in Prdm16csp1/wt mice. Metabolic alterations and transcriptional dysregulation in Prdm16csp1/wt affect cardiac tissue. Female Prdm16csp1/wt mice develop a more pronounced phenotype, indicating sexual dimorphism at this early pathological window. This study suggests that metabolic dysregulation is an early event in the PRDM16 associated cardiac pathology.
Assuntos
Cardiomiopatias , Coração , Animais , Feminino , Masculino , Camundongos , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Miocárdio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Caracteres SexuaisRESUMO
AIM: Calcineurin inhibitors (CNIs) are the backbone for immunosuppression after solid organ transplantation. Although successful in preventing kidney transplant rejection, their nephrotoxic side effects contribute to allograft injury. Renal parenchymal lesions occur for cyclosporine A (CsA) as well as for the currently favored tacrolimus (Tac). We aimed to study whether chronic CsA and Tac exposures, before reaching irreversible nephrotoxic damage, affect renal compartments differentially and whether related pathogenic mechanisms can be identified. METHODS: CsA and Tac were administered chronically in wild type Wistar rats using osmotic minipumps over 4 weeks. Functional parameters were controlled. Electron microscopy, confocal, and 3D-structured illumination microscopy were used for histopathology. Clinical translatability was tested in human renal biopsies. Standard biochemical, RNA-seq, and proteomic technologies were applied to identify implicated molecular pathways. RESULTS: Both drugs caused significant albeit differential damage in vasculature and nephron. The glomerular filtration barrier was more affected by Tac than by CsA, showing prominent deteriorations in endothelium and podocytes along with impaired VEGF/VEGFR2 signaling and podocyte-specific gene expression. By contrast, proximal tubule epithelia were more severely affected by CsA than by Tac, revealing lysosomal dysfunction, enhanced apoptosis, impaired proteostasis and oxidative stress. Lesion characteristics were confirmed in human renal biopsies. CONCLUSION: We conclude that pathogenetic alterations in the renal compartments are specific for either treatment. Considering translation to the clinical setting, CNI choice should reflect individual risk factors for renal vasculature and tubular epithelia. As a step in this direction, we share protein signatures identified from multiomics with potential pathognomonic relevance.