Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Planta Med ; 84(16): 1151-1164, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29925102

RESUMO

Magnolia officinalis and Magnolia obovata bark extracts have been used for thousands of years in Chinese and Japanese traditional medicines and are still widely employed as herbal preparations for their sedative, antioxidant, anti-inflammatory, antibiotic, and antispastic effects. Neolignans, particularly magnolol and honokiol, are the main substances responsible for the beneficial properties of the magnolia bark extract (MBE). The content of magnolol and honokiol in MBE depends on different factors, including the Magnolia plant species, the area of origin, the part of the plant employed, and the method used to prepare the extract. The biological and pharmacological activities of magnolol and honokiol have been extensively investigated. Here we review the safety and toxicological properties of magnolol and honokiol as pure substances or as components of concentrated MBE, including the potential side-effects in humans after oral intake. In vitro and in vivo genotoxicity studies indicated that concentrated MBE has no mutagenic and genotoxic potential, while a subchronic study performed according to OECD (Organisation for Economic Co-operation and Development) guidelines established a no adverse effect level for concentrated MBE > 240 mg/kg b.w/d. Similar to other dietary polyphenols, magnolol and honokiol are subject to glucuronidation, and despite a relatively quick clearance, an interaction with pharmaceutical active principles or other herbal constituents cannot be excluded. However, intervention trials employing concentrated MBE for up to 1 y did not report adverse effects. In conclusion, over the recent years different food safety authorities evaluated magnolol and honokiol and considered them safe.


Assuntos
Compostos de Bifenilo/efeitos adversos , Compostos de Bifenilo/farmacocinética , Compostos de Bifenilo/toxicidade , Lignanas/efeitos adversos , Lignanas/farmacocinética , Lignanas/toxicidade , Animais , Compostos de Bifenilo/análise , Interações Medicamentosas , Humanos , Lignanas/análise , Magnolia/química , Testes de Mutagenicidade , Extratos Vegetais/química , Distribuição Tecidual
2.
Curr Res Food Sci ; 9: 100793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071473

RESUMO

Confectionary products hold promise as unconventional food carriers for probiotic microorganisms. This study explored the delivery of Heyndrickxia coagulans SNZ1969, a spore-forming probiotic, using gummy candies. In this study, we prepared gummy candies containing bacterial spores with a viable count that remained stable during a 24-month shelf-life period, meeting the label claim of at least one billion CFUs per serving (24 g). Then, we carried out an intervention trial involving 24 healthy adults who consumed one serving per day for two weeks followed by an additional two weeks of follow-up. Fecal samples were collected and analyzed with a protocol that allowed the viable counts of SNZ1969, both in spore and vegetative forms. The obtained results revealed that bacterial spores germinated in all volunteers. SNZ1969 persistence in the gut was monitored for two weeks after the end of gummy candy consumption, indicating its potential for prolonged colonization. These findings highlight the potential of unconventional food carriers for probiotic delivery and suggest that spore-forming probiotics can be metabolically active in the human intestine. These findings provide information for the development of food products containing spore-forming probiotics and their potential benefits in promoting gastrointestinal health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA