Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Biol Reprod ; 109(4): 432-449, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37531262

RESUMO

In vitro maturation (IVM) is an alternative assisted reproductive technology with reduced hormone-related side effects and treatment burden compared to conventional IVF. Capacitation (CAPA)-IVM is a bi-phasic IVM system with improved clinical outcomes compared to standard monophasic IVM. Yet, CAPA-IVM efficiency compared to conventional IVF is still suboptimal in terms of producing utilizable blastocysts. Previously, we have shown that CAPA-IVM leads to a precocious increase in cumulus cell (CC) glycolytic activity during cytoplasmic maturation. In the current study, considering the fundamental importance of CCs for oocyte maturation and cumulus-oocyte complex (COC) microenvironment, we further analyzed the bioenergetic profiles of maturing CAPA-IVM COCs. Through a multi-step approach, we (i) explored mitochondrial function of the in vivo and CAPA-IVM matured COCs through real-time metabolic analysis with Seahorse analyzer, and to improve COC metabolism (ii) supplemented the culture media with lactate and/or super-GDF9 (an engineered form of growth differentiation factor 9) and (iii) reduced culture oxygen tension. Our results indicated that the pre-IVM step is delicate and prone to culture-related disruptions. Lactate and/or super-GDF9 supplementations failed to eliminate pre-IVM-induced stress on COC glucose metabolism and mitochondrial respiration. However, when performing pre-IVM culture under 5% oxygen tension, CAPA-IVM COCs showed similar bioenergetic profiles compared to in vivo matured counterparts. This is the first study providing real-time metabolic analysis of the COCs from a bi-phasic IVM system. The currently used analytical approach provides the quantitative measures and the rational basis to further improve IVM culture requirements.

2.
J Assist Reprod Genet ; 40(12): 2851-2863, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776437

RESUMO

PURPOSE: Glucose and redox metabolism characterization in mouse antral follicles with meiotically blocked oocytes, after in vitro follicle culture (IFC) from the early secondary stage. METHODS: Following IFC (10 days), oocytes, corresponding cumulus (CC), and granulosa cells (GC) were collected from antral follicles: (i) on day 9-immature, germinal vesicle (GV) stage; (ii) on day 10, after hCG/EGF stimulation-mature, metaphase II (MII) stage and meiotically blocked (MB) immature GV stage. The metabolic profiles of all samples (GV, MII, and MB) were compared by measuring changes in metabolites involved in glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), and redox activity via enzymatic spectrophotometric assays in each cell type. RESULTS: Within MB follicles, GCs drive higher levels of glycolysis and lactic acid fermentation (LAF) while oocytes exert more PPP activity. MB-oocytes had significantly larger diameters compared to day 9 GVs. MB follicles revealed limited metabolic changes in the somatic compartment compared to their GV counterparts (before stimulation). MB-CCs showed increased aconitase and glucose-6-phosphate dehydrogenase activities with lower malate levels comparted to GV-CCs. MB and MII in vitro grown follicles displayed comparable metabolic profiles, suggesting culture induces metabolic exhaustion regardless of the maturation stage. CONCLUSIONS: Current results suggest that in addition to impaired nuclear maturation, metabolic disruption is present in MB follicles. MB follicles either compensate with high levels of TCA cycle and PPP activities in CCs, or are unable to drive proper levels of aerobic metabolism, which might be due to the current culture conditions.


Assuntos
Glucose , Oócitos , Feminino , Animais , Camundongos , Glucose/metabolismo , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Metáfase , Oxirredução
3.
Biol Reprod ; 107(4): 998-1013, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35717588

RESUMO

Establishing an ideal human follicle culture system for oncofertility patients relies mainly on animal models since donor tissue is scarce and often of suboptimal quality. The in vitro system developed in our laboratory supports the growth of prepubertal mouse secondary follicles up to mature oocytes. Given the importance of glucose in preparing the oocyte for proper maturation, a baseline characterization of follicle metabolism both in the culture system and in vivo was carried out. Markers of glucose-related pathways (glycolysis, tricarboxylic acid [TCA] cycle, pentose phosphate pathway [PPP], polyol pathway, and hexosamine biosynthetic pathway), as well as the antioxidant capacity, were measured in the different follicle cell types by both enzymatic activities (spectrophotometric detection) and gene expression (qPCR). This study confirmed that in vivo the somatic cells, mainly granulosa, exhibit intense glycolytic activity, while oocytes perform PPP. Throughout the final maturation step, oocytes in vivo and in vitro showed steady levels for all the key enzymes and metabolites. On the other hand, ovulation triggers a boost of pyruvate and lactate uptake in cumulus cells in vivo, consumes reduced nicotinamide adenine dinucleotide phosphate, and increases TCA cycle and small molecules antioxidant capacity activities, while in vitro, the metabolic upregulation in all the studied pathways is limited. This altered metabolic pattern might be a consequence of cell exhaustion because of culture conditions, impeding cumulus cells to fulfill their role in providing proper support for acquiring oocyte competence.


Assuntos
Antioxidantes , Oócitos , Animais , Antioxidantes/metabolismo , Células do Cúmulo/metabolismo , Feminino , Glucose/metabolismo , Hexosaminas/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , NADP/metabolismo , Oócitos/metabolismo , Via de Pentose Fosfato/fisiologia , Ácido Pirúvico/metabolismo , Ácidos Tricarboxílicos/metabolismo
4.
Cell Biol Int ; 46(11): 1787-1800, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35971753

RESUMO

Caveolin-1 (Cav-1) is an integral membrane protein present in all organelles, responsible for regulating and integrating multiple signals as a platform. Mitochondria are extremely adaptable to external cues in chronic liver diseases, and expression of Cav-1 may affect mitochondrial flexibility in hepatic stellate cells (HSCs) activation. We previously demonstrated that exogenous expression of Cav-1 was sufficient to increase some classical markers of activation in HSCs. Here, we aimed to evaluate the influence of exogenous expression and knockdown of Cav-1 on regulating the mitochondrial plasticity, metabolism, endoplasmic reticulum (ER)-mitochondria distance, and lysosomal activity in HSCs. To characterize the mitochondrial, lysosomal morphology, and ER-mitochondria distance, we perform transmission electron microscope analysis. We accessed mitochondria and lysosomal networks and functions through a confocal microscope and flow cytometry. The expression of mitochondrial machinery fusion/fission genes was examined by real-time polymerase chain reaction. Total and mitochondrial cholesterol content was measured using Amplex Red. To define energy metabolism, we used the Oroboros system in the cells. We report that GRX cells with exogenous expression or knockdown of Cav-1 changed mitochondrial morphometric parameters, OXPHOS metabolism, ER-mitochondria distance, lysosomal activity, and may change the activation state of HSC. This study highlights that Cav-1 may modulate mitochondrial function and structural reorganization in HSC activation, being a potential candidate marker for chronic liver diseases and a molecular target for therapeutic intervention.


Assuntos
Caveolina 1 , Células Estreladas do Fígado , Caveolina 1/genética , Caveolina 1/metabolismo , Colesterol/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo
5.
J Assist Reprod Genet ; 39(6): 1277-1295, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469374

RESUMO

PURPOSE: To study whether the cumulus cell antioxidant system varies accordingly to patients clinical characteristics' as age, infertility diagnosis, BMI, and stimulation protocol applied and if the antioxidant profile of cumulus cells could be used as a predictor of embryo development. METHODS: A prospective study including 383 human cumulus samples provided by 191 female patients undergoing intracytoplasmic sperm injection during in vitro fertilization treatments from a local in vitro fertilization center and processed in university laboratories. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) enzyme activity levels and reduced glutathione (GSH) levels were measured in cumulus oophorus cells individually collected from each aspirated cumulus-oocyte complex, and the results of each sample were compared considering the oocytes outcome after ICSI and patients clinical characteristics. A total of 223 other human cumulus samples from previous studies were submitted to a gene expression meta-analysis. RESULTS: The antioxidant system changes dramatically depending on patients' age, infertility diagnosis, stimulation protocol applied, and oocyte quality. SOD activity in cumulus cells revealed to be predictive of top-quality blastocysts for young patients with male factor infertility (P < 0.05), while GST levels were shown to be extremely influenced by infertility cause (P < 0.0001) and stimulation protocol applied (P < 0.05), but nonetheless, it can be used as a complementary tool for top-quality blastocyst prediction in patients submitted to intracytoplasmic sperm injection technique (ICSI) by male factor infertility (P < 0.05). CONCLUSION: Through a simple and non-invasive analysis, the evaluation of redox enzymes in cumulus cells could be used to predict embryo development, in a personalized matter in specific patient groups, indicating top-quality oocytes and improving success rates in in vitro fertilization treatments. TRIAL REGISTRATION: The trial was registered at UFRGS Research Ethics Committee and Plataforma Brasil under approval number 68081017.2.0000.5347 in June 6, 2019.


Assuntos
Células do Cúmulo , Infertilidade Masculina , Antioxidantes/metabolismo , Células do Cúmulo/fisiologia , Desenvolvimento Embrionário/genética , Feminino , Fertilização in vitro , Humanos , Infertilidade Masculina/metabolismo , Masculino , Oócitos/metabolismo , Estudos Prospectivos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
6.
Biol Reprod ; 104(4): 902-913, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33480981

RESUMO

In vitro maturation (IVM) is an assisted reproduction technique with reduced hormone-related side-effects. Several attempts to implement IVM in routine practice have failed, primarily due to its relatively low efficiency compared with conventional in vitro fertilization (IVF). Recently, capacitation (CAPA)-IVM-a novel two-step IVM method-has improved the embryology outcomes through synchronizing the oocyte nuclear and cytoplasmic maturation. However, the efficiency gap between CAPA-IVM and conventional IVF is still noticeable especially in the numerical production of good quality embryos. Considering the importance of glucose for oocyte competence, its metabolization is studied within both in vivo and CAPA-IVM matured mouse cumulus-oocyte-complexes (COCs) through direct measurements in both cellular compartments, from transcriptional and translational perspectives, to reveal metabolic shortcomings within the CAPA-IVM COCs. These results confirmed that within in vivo COC, cumulus cells (CCs) are highly glycolytic, whereas oocytes, with low glycolytic activity, are deviating their glucose towards pentose phosphate pathway. No significant differences were observed in the CAPA-IVM oocytes compared with their in vivo counterparts. However, their CCs exhibited a precocious increase of glycolytic activity during the pre-maturation culture step and activity was decreased during the IVM step. Here, specific alterations in mouse COC glucose metabolism due to CAPA-IVM culture were characterized using direct measurements for the first time. Present data show that, while CAPA-IVM CCs are able to utilize glucose, their ability to support oocytes during final maturation is impaired. Future CAPA-IVM optimization strategies could focus on adjusting culture media energy substrate concentrations and/or implementing co-culture strategies.


Assuntos
Células do Cúmulo/metabolismo , Glucose/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Animais , Células Cultivadas , Feminino , Glicólise/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Oogênese/fisiologia
7.
IUBMB Life ; 72(10): 2133-2145, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710804

RESUMO

Natural products are a valuable source of new molecules and are important for drug discovery. Many chemotherapeutics currently in clinical use were originated from natural sources and are effective cytotoxic agents. In this study, we investigated the cytotoxic and pro-apoptotic effects of achyrobichalcone (ACB) and 3-O-methylquercetin (3OMQ), two novel compounds isolated from the Achyrocline satureioides plant. Because extracts from this plant have been shown to have anticancer activity in vitro, we evaluated ACB and 3OMQ using a human breast cancer cell line, MDA-MB-231, and a nontumorigenic human breast epithelial cell line, MCF-12A. We found that ACB demonstrates cytotoxic effects on MDA-MB-231 cells, but not MCF-12A cells. 3OMQ also demonstrated cytotoxic effects on MDA-MB-231 cells, but with lower selectivity compared to treated MCF-12A cells. Cell death by both compounds was associated with caspase-9 and caspase-3/7 activation. Using high-resolution respirometry, we found that ACB and 3OMQ were able to cause acute mitochondrial dysfunction in MDA-MB-231-treated cells. These results suggest that apoptosis in MDA-MB-231 cells is induced through the activation of the mitochondrial-dependent pathway. Collectively, these findings suggest that ACB is a strong candidate for further anticancer in vivo tests.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/farmacologia , Neoplasias da Mama/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Quercetina/análogos & derivados , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Biflavonoides/química , Neoplasias da Mama/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Quercetina/química , Quercetina/farmacologia
8.
BMC Cancer ; 20(1): 474, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32456685

RESUMO

BACKGROUND: Chemotherapeutics can stimulate immune antitumor response by inducing immunogenic cell death (ICD), which is activated by Damage-Associated Molecular Patterns (DAMPs) like the exposure of calreticulin (CRT) on the cell surface, the release of ATP and the secretion of High Mobility Group Box 1 (HMGB1). METHODS: Here, we investigated the levels of ICD-associated DAMPs induced by chemotherapeutics commonly used in the clinical practice of non-small cell lung cancer (NSCLC) and the association of these DAMPs with apoptosis and autophagy. A549 human lung adenocarcinoma cells were treated with clinically relevant doses of cisplatin, carboplatin, etoposide, paclitaxel and gemcitabine. We assessed ICD-associated DAMPs, cell viability, apoptosis and autophagy in an integrated way. RESULTS: Cisplatin and its combination with etoposide induced the highest levels of apoptosis, while etoposide was the less pro-apoptotic treatment. Cisplatin also induced the highest levels of ICD-associated DAMPs, which was not incremented by co-treatments. Etoposide induced the lower levels of ICD and the highest levels of autophagy, suggesting that the cytoprotective role of autophagy is dominant in relation to its pro-ICD role. High levels of CRT were associated with better prognosis in TCGA databank. In an integrative analysis we found a strong positive correlation between DAMPs and apoptosis, and a negative correlation between cell number and ICD-associated DAMPs as well as between autophagy and apoptosis markers. We also purpose a mathematical integration of ICD-associated DAMPs in an index (IndImunnog) that may represent with greater biological relevance this process. Cisplatin-treated cells showed the highest IndImmunog, while etoposide was the less immunogenic and the more pro-autophagic treatment. CONCLUSIONS: Cisplatin alone induced the highest levels of ICD-associated DAMPs, so that its combination with immunotherapy may be a promising therapeutic strategy in NSCLC.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Alarminas/metabolismo , Antineoplásicos/farmacologia , Morte Celular Imunogênica , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Trifosfato de Adenosina/metabolismo , Alarminas/efeitos dos fármacos , Apoptose , Autofagia , Calreticulina/metabolismo , Carboplatina/farmacologia , Caspase 3/metabolismo , Sobrevivência Celular , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Etoposídeo/farmacologia , Proteína HMGB1/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Paclitaxel/farmacologia , Prognóstico , Gencitabina
9.
J Biochem Mol Toxicol ; 34(3): e22439, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31909875

RESUMO

Nicotinamide N-methyltransferase (NNMT) plays a central role in cellular metabolism, regulating pathways including epigenetic regulation, cell signalling, and energy production. Our previous studies have shown that the expression of NNMT in the human neuroblastoma cell line SH-SY5Y increased complex I activity and subsequent ATP synthesis. This increase in ATP synthesis was lower than the increase in complex I activity, suggesting uncoupling of the mitochondrial respiratory chain. We, therefore, hypothesised that pathways that reduce oxidative stress are also increased in NNMT-expressing SH-Y5Y cells. The expression of uncoupling protein-2 messenger RNA and protein were significantly increased in NNMT-expressing cells (57% ± 5.2% and 20.1% ± 1.5%, respectively; P = .001 for both). Total GSH (22 ± 0.3 vs 35.6 ± 1.1 nmol/mg protein), free GSH (21.9 ± 0.2 vs 33.5 ± 1 nmol/mg protein), and GSSG (0.6 ± 0.02 vs 1 ± 0.05 nmol/mg protein; P = .001 for all) concentrations were significantly increased in NNMT-expressing cells, whereas the GSH:GSSG ratio was decreased (39.4 ± 1.8 vs 32.3 ± 2.5; P = .02). Finally, reactive oxygen species (ROS) content was decreased in NNMT-expressing cells (0.3 ± 0.08 vs 0.12 ± 0.03; P = .039), as was the concentration of 8-isoprostane F2α (200 ± 11.5 vs 45 ± 2.6 pg/mg protein; P = .0012). Taken together, these results suggest that NNMT expression reduced ROS generation and subsequent lipid peroxidation by uncoupling the mitochondrial membrane potential and increasing GSH buffering capacity, most likely to compensate for increased complex I activity and ATP production.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neuroblastoma/enzimologia , Nicotinamida N-Metiltransferase/biossíntese , Estresse Oxidativo , Linhagem Celular Tumoral , Humanos , Neuroblastoma/patologia
10.
11.
Brain Behav Immun ; 80: 879-888, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176000

RESUMO

Sepsis is characterized by a severe and disseminated inflammation. In the central nervous system, sepsis promotes synaptic dysfunction and permanent cognitive impairment. Besides sepsis-induced neuronal dysfunction, glial cell response has been gaining considerable attention with microglial activation as a key player. By contrast, astrocytes' role during acute sepsis is still underexplored. Astrocytes are specialized immunocompetent cells involved in brain surveillance. In this context, the potential communication between the peripheral immune system and astrocytes during acute sepsis still remains unclear. We hypothesized that peripheral blood mononuclear cell (PBMC) mediators are able to affect the brain during an episode of acute sepsis. With this in mind, we first performed a data-driven transcriptome analysis of blood from septic patients to identify common features among independent clinical studies. Our findings evidenced pronounced impairment in energy-related signaling pathways in the blood of septic patients. Since astrocytes are key for brain energy homeostasis, we decided to investigate the communication between PBMC mediators and astrocytes in a rat model of acute sepsis, induced by cecal ligation and perforation (CLP). In the CLP animals, we identified widespread in vivo brain glucose hypometabolism. Ex vivo analyses demonstrated astrocyte reactivity along with reduced glutamate uptake capacity during sepsis. Also, by exposing cultured astrocytes to mediators released by PBMCs from CLP animals, we reproduced the energetic failure observed in vivo. Finally, by pharmacologically inhibiting phosphoinositide 3-kinase (PI3K), a central metabolic pathway downregulated in the blood of septic patients and reduced in the CLP rat brain, we mimicked the PBMC mediators effect on glutamate uptake but not on glucose metabolism. These results suggest that PBMC mediators are capable of directly mediating astrocyte reactivity and contribute to the brain energetic failure observed in acute sepsis. Moreover, the evidence of PI3K participation in this process indicates a potential target for therapeutic modulation.


Assuntos
Astrócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Sepse/fisiopatologia , Adulto , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/fisiologia , Masculino , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Wistar , Sepse/genética , Transdução de Sinais/fisiologia
12.
Biochem J ; 473(19): 3253-67, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27389312

RESUMO

Nicotinamide N-methyltransferase (NNMT) is responsible for the N-methylation of nicotinamide to 1-methylnicotinamide. Our recent studies have demonstrated that NNMT regulates cellular processes fundamental to the correct functioning and survival of the cell. It has been proposed that NNMT may possess ß-carboline (BC) N-methyltransferase activity, endogenously and exogenously produced pyridine-containing compounds which, when N-methylated, are potent inhibitors of Complex I and have been proposed to have a role in the pathogenesis of Parkinson's disease. We have investigated the ability of recombinant NNMT to N-methylate norharman (NH) to 2-N-methylnorharman (MeNH). In addition, we have investigated the toxicity of the BC NH, its precursor 1,2,3,4-tetrahydronorharman (THNH) and its N-methylated metabolite MeNH, using our in vitro SH-SY5Y NNMT expression model. Recombinant NNMT demonstrated NH 2N-methyltransferase activity, with a Km of 90 ± 20 µM, a kcat of 3 × 10(-4) ± 2 × 10(-5) s(-1) and a specificity constant (kcat/Km) of 3 ± 1 s(-1) M(-1) THNH was the least toxic of all three compounds investigated, whereas NH demonstrated the greatest, with no difference observed in terms of cell viability and cell death between NNMT-expressing and non-expressing cells. In NNMT-expressing cells, MeNH increased cell viability and cellular ATP concentration in a dose-dependent manner after 72 and 120 h incubation, an effect that was not observed after 24 h incubation or in non-NNNT-expressing cells at any time point. Taken together, these results suggest that NNMT may be a detoxification pathway for BCs such as NH.


Assuntos
Carbolinas/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Catálise , Linhagem Celular Tumoral , Humanos , Metilação
13.
Int J Sport Nutr Exerc Metab ; 27(3): 197-203, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28182512

RESUMO

In acute myocardial infarction (AMI), reactive oxygen species may cause irreversible damage to the heart tissue. Physical training is capable of enhancing antioxidant capacity, acting as a cardioprotective factor. We assessed the preventive effects of physical training on the antioxidant and functional responses of the heart of Wistar Kyoto rats after AMI. Wistar Kyoto rats (n = 12) were allocated to sedentary (SED) or trained (EXE-aerobic training on a treadmill) groups. Echocardiographic exams were performed 48 hr before and 48 hr after the induction of AMI. Superoxide dismutase (SOD) and catalase (CAT) activities, and total glutathione (GSH) were measured in vitro in the heart tissue. After AMI, the EXE group showed higher left ventricular shortening fraction (29%; p = .004), higher cardiac output (37%; p = .032) and reduced myocardial infarction size (16%; p = .007) than SED. The EXE group showed a higher nonenzymatic antioxidant capacity (GSH, 23%; p = .004), but the SOD and CAT activities were higher in SED (23% SOD; p = .021 and 20% CAT; p = .016). In addition, the SOD activity was positively correlated with myocardial infarction size and inversely correlated with cardiac output. Physical training partially preserved cardiac function and increased intracellular antioxidant response in cardiac tissue of animals after AMI.


Assuntos
Antioxidantes/metabolismo , Infarto do Miocárdio/metabolismo , Condicionamento Físico Animal , Animais , Catalase/metabolismo , Tolerância ao Exercício , Glutationa/metabolismo , Coração/fisiopatologia , Masculino , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
14.
Tumour Biol ; 37(8): 10775-84, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26873489

RESUMO

Lung cancer is the most lethal cancer-related disease worldwide. Since survival rates remain poor, there is an urgent need for more effective therapies that could increase the overall survival of lung cancer patients. Lung tumors exhibit increased levels of oxidative markers with altered levels of antioxidant defenses, and previous studies demonstrated that the overexpression of the antioxidant enzyme catalase (CAT) might control tumor proliferation and aggressiveness. Herein, we evaluated the effect of CAT treatment on the sensitivity of A549 human lung adenocarcinoma cells toward various anticancer treatments, aiming to establish the best drug combination for further therapeutic management of this disease. Exponentially growing A549 cells were treated with CAT alone or in combination with chemotherapeutic drugs (cisplatin, 5-fluorouracil, paclitaxel, daunorubicin, and hydroxyurea). CalcuSyn(®) software was used to assess CAT/drug interactions (synergism or antagonism). Growth inhibition, NFκB activation status, and redox parameters were also evaluated in CAT-treated A549 cells. CAT treatment caused a cytostatic effect, decreased NFκB activation, and modulated the redox parameters evaluated. CAT treatment exhibited a synergistic effect among most of the anticancer drugs tested, which is significantly correlated with an increased H2O2 production. Moreover, CAT combination caused an antagonism in paclitaxel anticancer effect. These data suggest that combining CAT (or CAT analogs) with traditional chemotherapeutic drugs, especially cisplatin, is a promising therapeutic strategy for the treatment of lung cancer.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Catalase/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Dissulfeto de Glutationa/análise , Humanos , Peróxido de Hidrogênio/metabolismo , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Oxirredução , Compostos de Sulfidrila/análise
15.
Int J Neuropsychopharmacol ; 19(10)2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27207915

RESUMO

BACKGROUND: Increased inflammatory markers and oxidative stress have been reported in serum among patients with bipolar disorder (BD). The aim of this study is to assess whether biochemical changes in the serum of patients induces neurotoxicity in neuronal cell cultures. METHODS: We challenged the retinoic acid-differentiated human neuroblastoma SH-SY5Y cells with the serum of BD patients at early and late stages of illness and assessed neurite density and cell viability as neurotoxic endpoints. RESULTS: Decreased neurite density was found in neurons treated with the serum of patients, mostly patients at late stages of illness. Also, neurons challenged with the serum of late-stage patients showed a significant decrease in cell viability. CONCLUSIONS: Our findings showed that the serum of patients with bipolar disorder induced a decrease in neurite density and cell viability in neuronal cultures.

17.
Biochem Biophys Res Commun ; 467(3): 491-6, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26456643

RESUMO

Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to 1-methylnicotinamide. We have previously shown that NNMT is significantly overexpressed in the brains of patients who have died of Parkinson's disease, and others have shown that NNMT is significantly overexpressed in a variety of diseases ranging from cancer to hepatic cirrhosis. In vitro overexpression has revealed many cytoprotective effects of NNMT, in particular increased complex I activity and ATP synthesis. Although this appears to be mediated by an increase in 1-methylnicotinamide production, the molecular mechanisms involved remain unclear. In the present study, we have investigated the role that sirtuins 1, 2 and 3, class III DNA deacetylase enzymes known to regulate mitochondrial energy production and cell cycle, have in mediating the effects of NNMT upon complex I activity. Expression of NNMT in SH-SY5Y human neuroblastoma cells, which have no endogenous expression of NNMT, significantly increased the expression of all three sirtuins. siRNA-mediated silencing of sirtuin 3 expression decreased complex I activity in NNMT-expressing SH-SY5Y cells to that observed in wild-type SH-SY5Y, and significantly reduced cellular ATP content also. These results demonstrate that sirtuin 3 is a key mediator of NNMT-induced complex I activity and ATP synthesis. These results further reinforce a central role for NNMT in the regulation of energy homeostasis and provide further mechanistic insight into the consequences of enhanced NNMT expression.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Sirtuína 3/metabolismo , Trifosfato de Adenosina/biossíntese , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Sirtuína 3/genética
18.
Tumour Biol ; 36(6): 4681-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25638031

RESUMO

Oxidative stress is involved in many cancer-related processes; however, current therapeutics are unable to benefit from this approach. The lungs have a very exquisite redox environment that may contribute to the frequent and deadly nature of lung cancer. Very few studies specifically address lung large-cell carcinoma (LCC), even though this is one of the major subtypes. Using bioinformatic (in silico) tools, we demonstrated that a more aggressive lung LCC cell line (HOP-92) has an overall increase activity of the human antioxidant gene (HAG) network (P = 0.0046) when compared to the less aggressive cell line H-460. Gene set enrichment analysis (GSEA) showed that the expression of metallothioneins (MT), glutathione peroxidase 1 (GPx-1), and catalase (CAT) are responsible for this difference in gene signature. This was validated in vitro, where HOP-92 showed a pro-oxidative imbalance, presenting higher antioxidant enzymes (superoxide dismutase (SOD), CAT, and GPx) activities, lower reduced sulfhydryl groups and antioxidant potential, and higher lipoperoxidation and reactive species production. Also, HAG network is upregulated in lung LCC patients with worst outcome. Finally, the prognostic value of genes enriched in the most aggressive cell line was assessed in this cohort. Isoforms of metallothioneins are associated with bad prognosis, while the thioredoxin-interacting protein (TXNIP) is associated with good prognosis. Thus, redox metabolism can be an important aspect in lung LCC aggressiveness and a possible therapeutic target.


Assuntos
Carcinoma de Células Grandes/genética , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Estresse Oxidativo/genética , Antioxidantes/metabolismo , Carcinoma de Células Grandes/tratamento farmacológico , Carcinoma de Células Grandes/patologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Catalase/biossíntese , Catalase/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Glutationa Peroxidase/biossíntese , Glutationa Peroxidase/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Glutationa Peroxidase GPX1
19.
Tumour Biol ; 35(2): 1233-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24018823

RESUMO

High cofilin-1 levels have been shown to be an accurate prognostic biomarker in non-small cell lung cancer (NSCLC) and a predictive factor in drug resistance. Herein we explore the role of cofilin-1 in cis-diamminedichloroplatinum(II) (cisplatin) resistance. We evaluated cofilin-1 levels in intrinsically cisplatin-resistant A549 (ICR-A549) cells and determined the cisplatin toxicity in A549 cells transiently transfected and overexpressing CFL1 plasmid. Moreover, expression levels (activity) of the CFL1 gene network were analyzed in a cisplatin-resistant human lung adenocarcinoma cell panel. ICR-A549 cells, selected by challenging parental cells with 10-fold drug GI50 value, presented a sixfold increase in cisplatin GI50 value and an increased cofilin-1 immunocontent (P < 0.01). In addition, cells transfected with cofilin-1 became more resistant to cisplatin (P < 0.01). High activity of the CFL1 gene network was found in a cisplatin-resistant adenocarcinoma cell panel (P < 0.01). In vitro evidences suggest that cofilin-1 is a biological predictor of cisplatin resistance, supporting new treatment initiatives based on cofilin-1 levels to guide chemotherapeutic interventions in NSCLC patients.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cofilina 1/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico
20.
Int J Neuropsychopharmacol ; 17(9): 1453-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24800824

RESUMO

Bipolar disorder (BD) is a severe chronic psychiatric disorder that has been associated with cellular dysfunctions related to mitochondria, neurotrophin levels, and oxidative stress. Evidence has shown that endoplasmic reticulum (ER) stress may be a common pathway of the cellular changes described in BD. In the present study we assessed unfolded protein response (UPR) and the effects of this cellular process on lymphocytes from patients with BD. We also evaluated whether the stage of chronicity of BD was associated with changes in UPR parameters. Cultured lymphocytes from 30 patients with BD and 32 age- and sex-matched controls were treated with tunicamycin, an ER stressor, for 12 or 24 h to measure levels of UPR-related proteins (GRP78, eIF2α-P, and CHOP) using flow cytometry, and for 48 h to analyse ER stress-induced cell death. In healthy controls but not in patients we found an increase in levels of GRP78, eIF2α-P, and CHOP after ER stress induction. In addition, tunicamycin-induced cell death was significantly higher in patients compared to controls. More importantly, early-stage patients did not differ from controls while the late-stage patients showed an impaired ER stress response. Thus, dysfunction in ER-related stress response may be associated with decreased cellular resilience in BD and illness progression.


Assuntos
Transtorno Bipolar/patologia , Estresse do Retículo Endoplasmático/fisiologia , Linfócitos/fisiologia , Adulto , Transtorno Bipolar/tratamento farmacológico , Estudos de Casos e Controles , Sobrevivência Celular , Progressão da Doença , Chaperona BiP do Retículo Endoplasmático , Feminino , Citometria de Fluxo , Proteínas de Choque Térmico/metabolismo , Humanos , Linfócitos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/metabolismo , Tunicamicina , Resposta a Proteínas não Dobradas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA