Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Neuroimage ; 225: 117518, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33137472

RESUMO

Animal neuroimaging studies can provide unique insights into brain structure and function, and can be leveraged to bridge the gap between animal and human neuroscience. In part, this power comes from the ability to combine mechanistic interventions with brain-wide neuroimaging. Due to their phylogenetic proximity to humans, nonhuman primate neuroimaging holds particular promise. Because nonhuman primate neuroimaging studies are often underpowered, there is a great need to share data amongst translational researchers. Data sharing efforts have been limited, however, by the lack of standardized tools and repositories through which nonhuman neuroimaging data can easily be archived and accessed. Here, we provide an extension of the Neurovault framework to enable sharing of statistical maps and related voxelwise neuroimaging data from other species and template-spaces. Neurovault, which was previously limited to human neuroimaging data, now allows researchers to easily upload and share nonhuman primate neuroimaging results. This promises to facilitate open, integrative, cross-species science while affording researchers the increased statistical power provided by data aggregation. In addition, the Neurovault code-base now enables the addition of other species and template-spaces. Together, these advances promise to bring neuroimaging data sharing to research in other species, for supplemental data, location-based atlases, and data that would otherwise be relegated to a "file-drawer". As increasing numbers of researchers share their nonhuman neuroimaging data on Neurovault, this resource will enable novel, large-scale, cross-species comparisons that were previously impossible.


Assuntos
Encéfalo/diagnóstico por imagem , Disseminação de Informação/métodos , Neuroimagem , Animais , Bases de Dados Factuais , Neuroimagem Funcional , Macaca mulatta , Imageamento por Ressonância Magnética , Neurociências , Tomografia por Emissão de Pósitrons
2.
J Vis ; 17(1): 2, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28056136

RESUMO

Various paradigms can make visual stimuli disappear from awareness, but they often involve stimuli that are either relatively weak, competing with other salient inputs, and/or presented for a prolonged period of time. Here we explore a phenomenon that involves controlled perceptual disappearance of a peripheral visual stimulus without these limitations. It occurs when one eye's stimulus is abruptly removed during a binocular rivalry situation. This manipulation renders the remaining stimulus, which is still being presented to the other eye, invisible for up to several seconds. Our results suggest that this perceptual disappearance depends on a visual offset-transient that promotes dominance of the eye in which it occurs regardless of whether the eye is dominant or suppressed at the moment of the transient event. Using computational modeling, we demonstrate that standard rivalry mechanisms of interocular inhibition can indeed be complemented by a hypothesized transient-driven gating mechanism to explain the phenomenon. In essence, such a system suggests that visual awareness is dominated by the eye that receives transients and "sticks with" this eye-based dominance for some time in the absence of further transient events. We refer to this phenomenon as the "disrupted rivalry effect" and suggest that it is a potentially powerful paradigm for the study of cortical suppression mechanisms and the neural correlates of visual awareness.


Assuntos
Conscientização/fisiologia , Simulação por Computador , Dominância Ocular , Visão Binocular/fisiologia , Percepção Visual/fisiologia , Humanos
3.
J Neural Eng ; 20(3)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37386891

RESUMO

Objective. Electrical stimulation of visual cortex via a neuroprosthesis induces the perception of dots of light ('phosphenes'), potentially allowing recognition of simple shapes even after decades of blindness. However, restoration of functional vision requires large numbers of electrodes, and chronic, clinical implantation of intracortical electrodes in the visual cortex has only been achieved using devices of up to 96 channels. We evaluated the efficacy and stability of a 1024-channel neuroprosthesis system in non-human primates (NHPs) over more than 3 years to assess its suitability for long-term vision restoration.Approach.We implanted 16 microelectrode arrays (Utah arrays) consisting of 8 × 8 electrodes with iridium oxide tips in the primary visual cortex (V1) and visual area 4 (V4) of two sighted macaques. We monitored the animals' health and measured electrode impedances and neuronal signal quality by calculating signal-to-noise ratios of visually driven neuronal activity, peak-to-peak voltages of the waveforms of action potentials, and the number of channels with high-amplitude signals. We delivered cortical microstimulation and determined the minimum current that could be perceived, monitoring the number of channels that successfully yielded phosphenes. We also examined the influence of the implant on a visual task after 2-3 years of implantation and determined the integrity of the brain tissue with a histological analysis 3-3.5 years post-implantation.Main results. The monkeys remained healthy throughout the implantation period and the device retained its mechanical integrity and electrical conductivity. However, we observed decreasing signal quality with time, declining numbers of phosphene-evoking electrodes, decreases in electrode impedances, and impaired performance on a visual task at visual field locations corresponding to implanted cortical regions. Current thresholds increased with time in one of the two animals. The histological analysis revealed encapsulation of arrays and cortical degeneration. Scanning electron microscopy on one array revealed degradation of IrOxcoating and higher impedances for electrodes with broken tips.Significance. Long-term implantation of a high-channel-count device in NHP visual cortex was accompanied by deformation of cortical tissue and decreased stimulation efficacy and signal quality over time. We conclude that improvements in device biocompatibility and/or refinement of implantation techniques are needed before future clinical use is feasible.


Assuntos
Cegueira , Animais , Haplorrinos , Utah , Microeletrodos , Potenciais de Ação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA