RESUMO
Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.
Assuntos
Evolução Molecular , Variação Genética/genética , Genoma Humano/genética , Genoma/genética , Pan paniscus/genética , Pan troglodytes/genética , Animais , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Genótipo , Humanos , Dados de Sequência Molecular , Fenótipo , Filogenia , Especificidade da EspécieRESUMO
In 1994, two independent groups extracted DNA from several Pleistocene epoch mammoths and noted differences among individual specimens. Subsequently, DNA sequences have been published for a number of extinct species. However, such ancient DNA is often fragmented and damaged, and studies to date have typically focused on short mitochondrial sequences, never yielding more than a fraction of a per cent of any nuclear genome. Here we describe 4.17 billion bases (Gb) of sequence from several mammoth specimens, 3.3 billion (80%) of which are from the woolly mammoth (Mammuthus primigenius) genome and thus comprise an extensive set of genome-wide sequence from an extinct species. Our data support earlier reports that elephantid genomes exceed 4 Gb. The estimated divergence rate between mammoth and African elephant is half of that between human and chimpanzee. The observed number of nucleotide differences between two particular mammoths was approximately one-eighth of that between one of them and the African elephant, corresponding to a separation between the mammoths of 1.5-2.0 Myr. The estimated probability that orthologous elephant and mammoth amino acids differ is 0.002, corresponding to about one residue per protein. Differences were discovered between mammoth and African elephant in amino-acid positions that are otherwise invariant over several billion years of combined mammalian evolution. This study shows that nuclear genome sequencing of extinct species can reveal population differences not evident from the fossil record, and perhaps even discover genetic factors that affect extinction.
Assuntos
Núcleo Celular/genética , Elefantes/genética , Evolução Molecular , Extinção Biológica , Fósseis , Genoma/genética , Genômica , Análise de Sequência de DNA/métodos , África , Animais , Sequência Conservada/genética , Elefantes/anatomia & histologia , Feminino , Cabelo/metabolismo , Humanos , Índia , Masculino , FilogeniaRESUMO
Introduction: Infection in diabetic foot ulcers (DFUs) is one of the major complications associated with patients with diabetes. Staphylococcus aureus is the most common offending pathogen in patients with infected DFU. Previous studies have suggested the application of species-specific antibodies against S. aureus for diagnosis and monitoring treatment response. Early and accurate identification of the main pathogen is critical for management of DFU infection. Understanding the host immune response against species-specific infection may facilitate diagnosis and may suggest potential intervention options to promote healing infected DFUs. We sought to investigate evolving host transcriptome associated with surgical treatment of S. aureus- infected DFU. Methods: This study compared the transcriptome profile of 21 patients with S. aureus- infected DFU who underwent initial foot salvage therapy with irrigation and debridement followed by intravenous antibiotic therapy. Blood samples were collected at the recruitment (0 weeks) and 8 weeks after therapy to isolate peripheral blood mononuclear cells (PBMCs). We analyzed the PBMC expression of transcriptomes at two different time points (0 versus 8 weeks). Subjects were further divided into two groups at 8 weeks: healed (n = 17, 80.95%) versus non-healed (n = 4, 19.05%) based on the wound healing status. DESeq2 differential gene analysis was performed. Results and discussion: An increased expression of IGHG1, IGHG2, IGHG3, IGLV3-21, and IGLV6-57 was noted during active infection at 0 weeks compared with that at 8 weeks. Lysine- and arginine-rich histones (HIST1H2AJ, HIST1H2AL, HIST1H2BM, HIST1H3B, and HIST1H3G) were upregulated at the initial phase of active infection at 0 weeks. CD177 and RRM2 were also upregulated at the initial phase of active infection (0 weeks) compared with that at 8 weeks of follow-up. Genes of heat shock protein members (HSPA1A, HSPE1, and HSP90B1) were high in not healed patients compared with that in healed patients 8 weeks after therapy. The outcome of our study suggests that the identification of genes evolution based on a transcriptomic profiling could be a useful tool for diagnosing infection and assessing severity and host immune response to therapies.
Assuntos
Doenças Transmissíveis , Diabetes Mellitus , Pé Diabético , Staphylococcus aureus Resistente à Meticilina , Humanos , Transcriptoma , Pé Diabético/genética , Leucócitos Mononucleares , Staphylococcus aureus , HistonasRESUMO
Hedgehog signaling mediates embryologic development of the central nervous system and other tissues and is frequently hijacked by neoplasia to facilitate uncontrolled cellular proliferation. Meningiomas, the most common primary brain tumor, exhibit Hedgehog signaling activation in 6.5% of cases, triggered by recurrent mutations in pathway mediators such as SMO. In this study, we find 35.6% of meningiomas that lack previously known drivers acquired various types of somatic structural variations affecting chromosomes 2q35 and 7q36.3. These cases exhibit ectopic expression of Hedgehog ligands, IHH and SHH, respectively, resulting in Hedgehog signaling activation. Recurrent tandem duplications involving IHH permit de novo chromatin interactions between super-enhancers within DIRC3 and a locus containing IHH. Our work expands the landscape of meningioma molecular drivers and demonstrates enhancer hijacking of Hedgehog ligands as a route to activate this pathway in neoplasia.
Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meningioma/genética , Ligantes , Transdução de Sinais , Neoplasias Meníngeas/genéticaRESUMO
Cerebral arachnoid cysts (ACs) are one of the most common and poorly understood types of developmental brain lesion. To begin to elucidate AC pathogenesis, we performed an integrated analysis of 617 patient-parent (trio) exomes, 152,898 human brain and mouse meningeal single-cell RNA sequencing transcriptomes and natural language processing data of patient medical records. We found that damaging de novo variants (DNVs) were highly enriched in patients with ACs compared with healthy individuals (P = 1.57 × 10-33). Seven genes harbored an exome-wide significant DNV burden. AC-associated genes were enriched for chromatin modifiers and converged in midgestational transcription networks essential for neural and meningeal development. Unsupervised clustering of patient phenotypes identified four AC subtypes and clinical severity correlated with the presence of a damaging DNV. These data provide insights into the coordinated regulation of brain and meningeal development and implicate epigenomic dysregulation due to DNVs in AC pathogenesis. Our results provide a preliminary indication that, in the appropriate clinical context, ACs may be considered radiographic harbingers of neurodevelopmental pathology warranting genetic testing and neurobehavioral follow-up. These data highlight the utility of a systems-level, multiomics approach to elucidate sporadic structural brain disease.
Assuntos
Cistos Aracnóideos , Multiômica , Humanos , Animais , Camundongos , Cistos Aracnóideos/diagnóstico por imagem , Cistos Aracnóideos/genética , Encéfalo/diagnóstico por imagem , Exoma/genética , Testes GenéticosRESUMO
The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30% of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.
Assuntos
Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Adaptação Fisiológica , Capsicum/microbiologia , Mapeamento Cromossômico , Cucurbita/microbiologia , Regulação da Expressão Gênica , Ligação Genética , Genoma , Genótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Global control of hookworm infections relies on periodic Mass Drug Administration of benzimidazole drugs to high-risk groups, regardless of infection status. Mutations in the isotype-1 ß-tubulin gene have been identified in veterinary nematodes, resulting in structural changes and reduced drug-binding. In Ghana, previous studies have demonstrated significant variability in albendazole effectiveness among people infected with the hookworm Necator americanus, although the mechanisms underlying deworming response have not been defined. Using hookworm egg samples from a cross-sectional study in Ghana, we developed a multiplex amplicon deep sequencing (MAD-seq) method to screen genomic regions encapsulating putative drug-resistance markers in N. americanus isotype-1 ß-tubulin gene. Three single nucleotide polymorphisms (SNPs) corresponding to resistance-associated mutations (F167Y, E198A, F200Y) within the coding region of the isotype-1 ß-tubulin gene were characterized using MAD-seq in 30 matched pre- and post-treatment samples from individuals with persistent infection following therapy. Post-sequence analysis showed that the highest mean alternative nucleotide allele at each PCR amplicon was 0.034% (167amplicon) and 0.025% (198/200amplicon), suggesting minimal allelic variation. No samples contained the F167Y SNP, while one contained low-frequency reads associated with E198A (3.15%) and F200Y (3.13%). This MAD-seq method provides a highly sensitive tool to monitor the three putative benzimidazole resistance markers at individual and community levels. Further work is required to understand the association of these polymorphisms to treatment response.
Assuntos
Necator americanus , Tubulina (Proteína) , Animais , Benzimidazóis , Biomarcadores , Estudos Transversais , Resistência a Medicamentos/genética , Humanos , Isotipos de Imunoglobulinas , Tubulina (Proteína)/genéticaRESUMO
The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.
Assuntos
Genoma Bacteriano , Genômica/instrumentação , Microquímica/instrumentação , Mycoplasma genitalium/genética , Análise de Sequência de DNA/instrumentação , Eletroforese Capilar , Emulsões , Tecnologia de Fibra Óptica , Genômica/economia , Microquímica/economia , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA/economia , Fatores de TempoRESUMO
We report five new complete mitochondrial DNA (mtDNA) genomes of Siberian woolly mammoth (Mammuthus primigenius), sequenced with up to 73-fold coverage from DNA extracted from hair shaft material. Three of the sequences present the first complete mtDNA genomes of mammoth clade II. Analysis of these and 13 recently published mtDNA genomes demonstrates the existence of two apparently sympatric mtDNA clades that exhibit high interclade divergence. The analytical power afforded by the analysis of the complete mtDNA genomes reveals a surprisingly ancient coalescence age of the two clades, approximately 1-2 million years, depending on the calibration technique. Furthermore, statistical analysis of the temporal distribution of the (14)C ages of these and previously identified members of the two mammoth clades suggests that clade II went extinct before clade I. Modeling of protein structures failed to indicate any important functional difference between genomes belonging to the two clades, suggesting that the loss of clade II more likely is due to genetic drift than a selective sweep.
Assuntos
Elefantes/classificação , Elefantes/genética , Genoma Mitocondrial , Paleontologia , Filogenia , Animais , Sequência de Bases , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Variação Genética , Cabelo/química , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Serotyping of Streptococcus pneumoniae is a critical tool in the surveillance of the pathogen and in the development and evaluation of vaccines. Whole-genome DNA sequencing and analysis is becoming increasingly common and is an effective method for pneumococcal serotype identification of pure isolates. However, because of the complexities of the pneumococcal capsular loci, current analysis software requires samples to be pure (or nearly pure) and only contain a single pneumococcal serotype. We introduce a new software tool called SeroCall, which can identify and quantitate the serotypes present in samples, even when several serotypes are present. The sample preparation, library preparation and sequencing follow standard laboratory protocols. The software runs as fast as or faster than existing identification tools on typical computing servers and is freely available under an open source licence at https://github.com/knightjimr/serocall. Using samples with known concentrations of different serotypes as well as blinded samples, we were able to accurately quantify the abundance of different serotypes of pneumococcus in mixed cultures, with 100â% accuracy for detecting the major serotype and up to 86â% accuracy for detecting minor serotypes. We were also able to track changes in serotype frequency over time in an experimental setting. This approach could be applied in both epidemiological field studies of pneumococcal colonization and experimental laboratory studies, and could provide a cheaper and more efficient method for serotyping than alternative approaches.
Assuntos
Biologia Computacional/métodos , Streptococcus pneumoniae/classificação , Sequenciamento Completo do Genoma/métodos , Simulação por Computador , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Sorogrupo , Software , Streptococcus pneumoniae/genéticaRESUMO
Gaucher disease is reckoned for extreme phenotypic diversity that does not show consistent genotype/phenotype correlations. In Argentina, a national collaborative group, Grupo Argentino de Diagnóstico y Tratamiento de la Enfermedad de Gaucher, GADTEG, have delineated uniformly severe type 1 Gaucher disease manifestations presenting in childhood with large burden of irreversible skeletal disease. Here using Long-Read Single Molecule Real-Time (SMRT) Sequencing of GBA1 locus, we show that RecNciI allele is highly prevalent and associates with severe skeletal manifestations in childhood.
RESUMO
Importance: Moyamoya disease (MMD), a progressive vasculopathy leading to narrowing and ultimate occlusion of the intracranial internal carotid arteries, is a cause of childhood stroke. The cause of MMD is poorly understood, but genetic factors play a role. Several familial forms of MMD have been identified, but the cause of most cases remains elusive, especially among non-East Asian individuals. Objective: To assess whether ultrarare de novo and rare, damaging transmitted variants with large effect sizes are associated with MMD risk. Design, Setting, and Participants: A genetic association study was conducted using whole-exome sequencing case-parent MMD trios in a small discovery cohort collected over 3.5 years (2016-2019); data were analyzed in 2020. Medical records from US hospitals spanning a range of 1 month to 1.5 years were reviewed for phenotyping. Exomes from a larger validation cohort were analyzed to identify additional rare, large-effect variants in the top candidate gene. Participants included patients with MMD and, when available, their parents. All participants who met criteria and were presented with the option to join the study agreed to do so; none were excluded. Twenty-four probands (22 trios and 2 singletons) composed the discovery cohort, and 84 probands (29 trios and 55 singletons) composed the validation cohort. Main Outcomes and Measures: Gene variants were identified and filtered using stringent criteria. Enrichment and case-control tests assessed gene-level variant burden. In silico modeling estimated the probability of variant association with protein structure. Integrative genomics assessed expression patterns of MMD risk genes derived from single-cell RNA sequencing data of human and mouse brain tissue. Results: Of the 24 patients in the discovery cohort, 14 (58.3%) were men and 18 (75.0%) were of European ancestry. Three of 24 discovery cohort probands contained 2 do novo (1-tailed Poisson P = 1.1 × 10-6) and 1 rare, transmitted damaging variant (12.5% of cases) in DIAPH1 (mammalian diaphanous-1), a key regulator of actin remodeling in vascular cells and platelets. Four additional ultrarare damaging heterozygous DIAPH1 variants (3 unphased) were identified in 3 other patients in an 84-proband validation cohort (73.8% female, 77.4% European). All 6 patients were non-East Asian. Compound heterozygous variants were identified in ena/vasodilator-stimulated phosphoproteinlike protein EVL, a mammalian diaphanous-1 interactor that regulates actin polymerization. DIAPH1 and EVL mutant probands had severe, bilateral MMD associated with transfusion-dependent thrombocytopenia. DIAPH1 and other MMD risk genes are enriched in mural cells of midgestational human brain. The DIAPH1 coexpression network converges in vascular cell actin cytoskeleton regulatory pathways. Conclusions and Relevance: These findings provide the largest collection to date of non-East Asian individuals with sporadic MMD harboring pathogenic variants in the same gene. The results suggest that DIAPH1 is a novel MMD risk gene and impaired vascular cell actin remodeling in MMD pathogenesis, with diagnostic and therapeutic ramifications.
Assuntos
Forminas/genética , Doença de Moyamoya/genética , Adulto , Idade de Início , Moléculas de Adesão Celular/genética , Criança , Pré-Escolar , Estudos de Coortes , Simulação por Computador , Exoma/genética , Feminino , Variação Genética , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Moyamoya/diagnóstico por imagem , Fenótipo , Análise de Sequência de RNA , População Branca , Sequenciamento do ExomaRESUMO
Severe obesity (SO) affects about 6% of youth in the United States, augmenting the risks for cardiovascular disease and type 2 diabetes. Herein, we obtained paired omental adipose tissue (omVAT) and abdominal subcutaneous adipose tissue (SAT) biopsies from girls with SO undergoing sleeve gastrectomy (SG), to test whether differences in cellular and transcriptomic profiles between omVAT and SAT depots affect insulin sensitivity differently. Following weight loss, these analyses were repeated in a subgroup of subjects having a second SAT biopsy. We found that omVAT displayed smaller adipocytes compared with SAT, increased lipolysis through adipose triglyceride lipase phosphorylation, reduced inflammation, and increased expression of browning/beiging markers. Contrary to omVAT, SAT adipocyte diameter correlated with insulin resistance. Following SG, both weight and insulin sensitivity improved markedly in all subjects. SAT adipocytes' size became smaller, showing increased lipolysis through perilipin 1 phosphorylation, decreased inflammation, and increased expression in browning/beiging markers. In summary, in adolescent girls with SO, both omVAT and SAT depots showed distinct cellular and transcriptomic profiles. Following weight loss, the SAT depot changed its cellular morphology and transcriptomic profiles into more favorable ones. These changes in the SAT depot may play a fundamental role in the resolution of insulin resistance.
Assuntos
Lipólise/fisiologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Omento/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Adolescente , Feminino , Gastrectomia , Humanos , Transcriptoma , Adulto JovemRESUMO
Trigeminal neuralgia (TN) is a common, debilitating neuropathic face pain syndrome often resistant to therapy. The familial clustering of TN cases suggests that genetic factors play a role in disease pathogenesis. However, no unbiased, large-scale genomic study of TN has been performed to date. Analysis of 290 whole exome-sequenced TN probands, including 20 multiplex kindreds and 70 parent-offspring trios, revealed enrichment of rare, damaging variants in GABA receptor-binding genes in cases. Mice engineered with a TN-associated de novo mutation (p.Cys188Trp) in the GABAA receptor Cl- channel γ-1 subunit (GABRG1) exhibited trigeminal mechanical allodynia and face pain behavior. Other TN probands harbored rare damaging variants in Na+ and Ca+ channels, including a significant variant burden in the α-1H subunit of the voltage-gated Ca2+ channel Cav3.2 (CACNA1H). These results provide exome-level insight into TN and implicate genetically encoded impairment of GABA signaling and neuronal ion transport in TN pathogenesis.
RESUMO
Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of excessive cerebrospinal fluid (CSF) accumulation and thereby treated with neurosurgical CSF diversion with high morbidity and failure rates. The poor neurodevelopmental outcomes and persistence of ventriculomegaly in some post-surgical patients highlight our limited knowledge of disease mechanisms. Through whole-exome sequencing of 381 patients (232 trios) with sporadic, neurosurgically treated CH, we found that damaging de novo mutations account for >17% of cases, with five different genes exhibiting a significant de novo mutation burden. In all, rare, damaging mutations with large effect contributed to ~22% of sporadic CH cases. Multiple CH genes are key regulators of neural stem cell biology and converge in human transcriptional networks and cell types pertinent for fetal neuro-gliogenesis. These data implicate genetic disruption of early brain development, not impaired CSF dynamics, as the primary pathomechanism of a significant number of patients with sporadic CH.
Assuntos
Ventrículos Cerebrais/metabolismo , Predisposição Genética para Doença , Hidrocefalia/genética , Neurogênese/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Exoma/genética , Feminino , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/patologia , Masculino , Mutação/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Sequenciamento do ExomaRESUMO
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
Assuntos
Paralisia Cerebral/genética , Proteínas F-Box/genética , Tubulina (Proteína)/genética , Proteínas Supressoras de Tumor/genética , beta Catenina/genética , Animais , Paralisia Cerebral/patologia , Ciclina D/genética , Citoesqueleto/genética , Drosophila/genética , Exoma/genética , Matriz Extracelular/genética , Feminino , Adesões Focais/genética , Predisposição Genética para Doença , Genoma Humano/genética , Humanos , Masculino , Mutação/genética , Neuritos/metabolismo , Neuritos/patologia , Fatores de Risco , Análise de Sequência de DNA , Transdução de Sinais/genética , Sequenciamento do Exoma , Proteína rhoB de Ligação ao GTP/genéticaRESUMO
BACKGROUND: With a whole genome duplication event and wealth of biological data, salmonids are excellent model organisms for studying evolutionary processes, fates of duplicated genes and genetic and physiological processes associated with complex behavioral phenotypes. It is surprising therefore, that no salmonid genome has been sequenced. Atlantic salmon (Salmo salar) is a good representative salmonid for sequencing given its importance in aquaculture and the genomic resources available. However, the size and complexity of the genome combined with the lack of a sequenced reference genome from a closely related fish makes assembly challenging. Given the cost and time limitations of Sanger sequencing as well as recent improvements to next generation sequencing technologies, we examined the feasibility of using the Genome Sequencer (GS) FLX pyrosequencing system to obtain the sequence of a salmonid genome. Eight pooled BACs belonging to a minimum tiling path covering approximately 1 Mb of the Atlantic salmon genome were sequenced by GS FLX shotgun and Long Paired End sequencing and compared with a ninth BAC sequenced by Sanger sequencing of a shotgun library. RESULTS: An initial assembly using only GS FLX shotgun sequences (average read length 248.5 bp) with approximately 30x coverage allowed gene identification, but was incomplete even when 126 Sanger-generated BAC-end sequences (approximately 0.09x coverage) were incorporated. The addition of paired end sequencing reads (additional approximately 26x coverage) produced a final assembly comprising 175 contigs assembled into four scaffolds with 171 gaps. Sanger sequencing of the ninth BAC (approximately 10.5x coverage) produced nine contigs and two scaffolds. The number of scaffolds produced by the GS FLX assembly was comparable to Sanger-generated sequencing; however, the number of gaps was much higher in the GS FLX assembly. CONCLUSION: These results represent the first use of GS FLX paired end reads for de novo sequence assembly. Our data demonstrated that this improved the GS FLX assemblies; however, with respect to de novo sequencing of complex genomes, the GS FLX technology is limited to gene mining and establishing a set of ordered sequence contigs. Currently, for a salmonid reference sequence, it appears that a substantial portion of sequencing should be done using Sanger technology.
Assuntos
Genômica/métodos , Salmo salar/genética , Análise de Sequência de DNA/métodos , Animais , Cromossomos Artificiais Bacterianos/genética , Evolução Molecular , Duplicação Gênica , Biblioteca Gênica , Genoma , Genômica/instrumentação , Genômica/estatística & dados numéricos , Salmo salar/classificação , Salmonidae/classificação , Salmonidae/genética , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/estatística & dados numéricosRESUMO
Congenital hydrocephalus (CH), featuring markedly enlarged brain ventricles, is thought to arise from failed cerebrospinal fluid (CSF) homeostasis and is treated with lifelong surgical CSF shunting with substantial morbidity. CH pathogenesis is poorly understood. Exome sequencing of 125 CH trios and 52 additional probands identified three genes with significant burden of rare damaging de novo or transmitted mutations: TRIM71 (p = 2.15 × 10-7), SMARCC1 (p = 8.15 × 10-10), and PTCH1 (p = 1.06 × 10-6). Additionally, two de novo duplications were identified at the SHH locus, encoding the PTCH1 ligand (p = 1.2 × 10-4). Together, these probands account for â¼10% of studied cases. Strikingly, all four genes are required for neural tube development and regulate ventricular zone neural stem cell fate. These results implicate impaired neurogenesis (rather than active CSF accumulation) in the pathogenesis of a subset of CH patients, with potential diagnostic, prognostic, and therapeutic ramifications.
Assuntos
Hidrocefalia/diagnóstico , Hidrocefalia/genética , Mutação/genética , Células-Tronco Neurais/fisiologia , Estudos de Coortes , Exoma/genética , Feminino , Humanos , Masculino , Células-Tronco Neurais/patologia , Receptor Patched-1/genética , Linhagem , Fatores de Transcrição/genética , Sequenciamento do Exoma/métodosRESUMO
OBJECTIVE: To evaluate the efficacy and safety of tadalafil taken as needed before sexual activity by men with diabetes and erectile dysfunction (ED). RESEARCH DESIGN AND METHODS: Men with type 1 or type 2 diabetes and a minimum 3-month history of ED were randomly allocated to one of three groups: placebo (n = 71), tadalafil 10 mg (n = 73), or tadalafil 20 mg (n = 72) taken up to once daily for 12 weeks. Changes from baseline in mean scores on the erectile function domain of the International Index of Erectile Function (IIEF) and changes from baseline in the proportion of "yes" responses to question 2, "Were you able to penetrate?," and 3, "Were you able to complete intercourse?," of the Sexual Encounter Profile were coprimary outcome measures. RESULTS: A total of 191 (88%) of 216 patients completed the study. Treatment with tadalafil significantly improved all primary efficacy variables, regardless of baseline HbA(1c) level. Therapy with tadalafil also significantly improved a number of secondary outcome measures, including changes in other IIEF domains, individual IIEF questions, and percentage of positive responses to a global assessment question measuring erection improvement. Treatment with tadalafil did not alter mean HbA(1c) levels. Tadalafil was well tolerated, with headache and dyspepsia being the most frequent adverse events with active treatment. CONCLUSIONS: Tadalafil therapy significantly enhanced erectile function and was well tolerated by men with diabetes and ED.