Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 41(4): 2489-504, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275550

RESUMO

Folding of group II introns is characterized by a first slow compaction of domain 1 (D1) followed by the rapid docking of other domains to this scaffold. D1 compaction initiates in a small subregion encompassing the κ and ζ elements. These two tertiary elements are also the major interaction sites with domain 5 to form the catalytic core. Here, we provide the first characterization of the structure adopted at an early folding step and show that the folding control element can be narrowed down to the three-way junction with the κ motif. In our nuclear magnetic resonance studies of this substructure derived from the yeast mitochondrial group II intron Sc.ai5γ, we show that a high affinity Mg(II) ion stabilizes the κ element and enables coaxial stacking between helices d' and d'', favoring a rigid duplex across the three-way junction. The κ-element folds into a stable GAAA-tetraloop motif and engages in A-minor interactions with helix d'. The addition of cobalt(III)hexammine reveals three distinct binding sites. The Mg(II)-promoted structural rearrangement and rigidification of the D1 core can be identified as the first micro-step of D1 folding.


Assuntos
Íntrons , Magnésio/química , Sequência de Bases , Sítios de Ligação , Cobalto/química , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Prótons , Dobramento de RNA
2.
Chemistry ; 17(19): 5393-403, 2011 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-21465580

RESUMO

With a view on protein-nucleic acid interactions in the presence of metal ions we studied the "simple" mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M(2+) in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%. Consequently, in protein-nucleic acid interactions imidazole-nucleobase stacks may well be of relevance. Furthermore, the well-known formation of macrochelates in binary M(2+) complexes of purine nucleotides, that is, the phosphate-coordinated M(2+) interacts with N7, is confirmed for the M(ATP)(2-) complexes. It is concluded that upon formation of the mixed-ligand complexes the M(2+)-N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M(UTP)(Ha)(2-) and M(ATP)(Ha)(2-) complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65±10)%, (75±8)%, and (31±14) % for Ni(ATP)(2-), Cu(ATP)(2-), and Zn(ATP)(2-), respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)(2-) species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.


Assuntos
Trifosfato de Adenosina/química , Complexos de Coordenação/química , Cobre/química , Histamina/química , Modelos Químicos , Níquel/química , Uridina Trifosfato/química , Zinco/química , Concentração de Íons de Hidrogênio , Isomerismo , Estrutura Molecular
4.
Inorg Chem ; 47(7): 2641-8, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18330981

RESUMO

The acidity constants of the (N7)H(+) sites of inosylyl(3'-->5')inosine (IpI(-)) were estimated and those of its (N1)H sites were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). The same method was used for the determination of the stability constants of the 1:1 complexes formed between Mg(2+), Co(2+), Ni(2+), Zn(2+), or Cd(2+) (= M(2+)) and (IpI - H)(2-) and, in the case of Mg(2+), also of (IpI - 2H)(3-). The stability constants of the M(IpI)(+) complexes were estimated. The acidity constants of H(inosine)(+) and the stability constants of the M(Ino)(2+) and M(Ino - H)(+) complexes were taken from the literature. The comparison of these and related data allows the conclusion that, in the M(IpI - H) species, chelates are formed; most likely they are preferably of an N7/N7 type. For the metal ions Co(2+), Ni(2+), Zn(2+), or Cd(2+), the formation degrees of the chelates are on the order of 60-80%; no chelates could be detected for the Mg(IpI - H) complexes. It is noteworthy that the (N1)H deprotonation, which leads to the M(IpI - H) species, occurs in all M(IpI)(+) complexes in the physiological pH range of about 7.5 or even below.


Assuntos
Ácidos/química , Fosfatos de Dinucleosídeos/química , Inosina/química , Metais/química , Nucleotídeos/química , Quelantes/química , Íons/química , Estrutura Molecular , Soluções
5.
Chemistry ; 14(10): 3100-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18270983

RESUMO

Replacement of a non-bridging oxygen in the phosphate diester bond by a sulfur has become quite popular in nucleic acid research and is often used as a probe, for example, in ribozymes, where the normally essential Mg(2+) is partly replaced by a thiophilic metal ion to reactivate the system. Despite these widely applied rescue experiments no detailed studies exist quantifying the affinity of metal ions to such terminal sulfur atoms. Therefore, we performed potentiometric pH titrations to determine the binding properties of pUp((S))U(3-) towards Mg(2+), Mn(2+), Zn(2+), Cd(2+), and Pb(2+), and compared these data with those previously obtained for the corresponding pUpU(3-) complexes. The primary binding site in both dinucleotides is the terminal phosphate group. Theoretically, also the formation of 10-membered chelates involving the terminal oxygen or sulfur atoms of the (thio)phosphate bridge is possible with both ligands. The results show that Mg(2+) and Mn(2+) exist as open (op) isomers binding to both dinucleotides only at the terminal phosphate group. Whereas Cd(pUpU)(-) only exists as Cd(pUpU)(-)(op), Cd(pUp((S))U)(-) is present to about 64 % as the S-coordinated macrochelate, Cd(pUp((S))U)(-)(cl/PS). Zn(2+) forms with pUp((S))U(3-) three isomeric species, that is, Zn(pUp((S))U)(-)(op), Zn(pUp((S))U)(-)(cl/PO), and Zn(pUp((S))U)(-)(cl/PS), which occur to about 33, 12 (O-bound), and 55 %, respectively. Pb(2+) forms the 10-membered chelate with both nucleotides involving only the terminal oxygen atoms of the (thio)phosphate bridge, that is, no indication of S binding was discovered in this case. Hence, Zn(2+) and Cd(2+) show pronounced thiophilic properties, whereas Mg(2+), Mn(2+), and Pb(2+) coordinate to the oxygen, macrochelate formation being of relevance with Pb(2+) only.


Assuntos
Metais/química , Oligonucleotídeos/química , Organofosfatos/química , Oxigênio/química , RNA/química , Enxofre/química , Sítios de Ligação , Concentração de Íons de Hidrogênio , Íons/química , Conformação de Ácido Nucleico , Oligonucleotídeos/síntese química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química
6.
Chemistry ; 14(22): 6663-71, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18567033

RESUMO

The extent to which the replacement of a ribose unit by a 2'-deoxyribose unit influences the acid-base properties of nucleotides has not hitherto been determined in detail. In this study, by potentiometric pH titrations in aqueous solution, we have measured the acidity constants of the 5'-di- and 5'-triphosphates of 2'-deoxyguanosine [i.e., of H(2)(dGDP)(-) and H(2)(dGTP)(2-)] as well as of the 5'-mono-, 5'-di-, and 5'-triphosphates of 2'-deoxyadenosine [i.e., of H(2)(dAMP)(+/-), H(2)(dADP)(-), and H(2)(dATP)(2-)]. These 12 acidity constants (of the 56 that are listed) are compared with those of the corresponding ribose derivatives (published data) measured under the same experimental conditions. The results show that all protonation sites in the 2'-deoxynucleotides are more basic than those in their ribose counterparts. The influence of the 2'-OH group is dependent on the number of 5'-phosphate groups as well as on the nature of the purine nucleobase. The basicity of N7 in guanine nucleotides is most significantly enhanced (by about 0.2 pK units), while the effect on the phosphate groups and the N1H or N1H(+) sites is less pronounced but clearly present. In addition, (1)H NMR chemical shift change studies in dependence on pD in D(2)O have been carried out for the dAMP, dADP, and dATP systems, which confirmed the results from the potentiometric pH titrations and showed the nucleotides to be in their anti conformations. Overall, our results are not only of relevance for metal ion binding to nucleotides or nucleic acids, but also constitute an exact basis for the calculation, determination, and understanding of perturbed pK(a) values in DNAzymes and ribozymes, as needed for the delineation of acid-base mechanisms in catalysis.


Assuntos
Ácidos/química , Álcalis/química , Desoxirribose/química , Nucleotídeos/química , Ribose/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética
7.
Dalton Trans ; (39): 5368-77, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18827944

RESUMO

The interaction between metal ions and nucleotides is well characterized, as is their importance for metabolic processes, e.g. in the synthesis of nucleic acids. Hence, it is surprising to find that no detailed comparison is available of the metal ion-binding properties between nucleoside 5'-phosphates and 2'-deoxynucleoside 5'-phosphates. Therefore, we have measured here by potentiometric pH titrations the stabilities of several metal ion complexes formed with 2'-deoxyadenosine 5'-monophosphate (dAMP2-), 2'-deoxyadenosine 5'-diphosphate (dADP3-) and 2'-deoxyadenosine 5'-triphosphate (dATP4-). These results are compared with previous data measured under the same conditions and available in the literature for the adenosine 5'-phosphates, AMP(2-), ADP(3-) and ATP(4-), as well as guanosine 5'-monophosphate (GMP(2-)) and 2'-deoxyguanosine 5'-monophosphate (dGMP(2-)). Hence, in total four nucleotide pairs, GMP(2-)/dGMP(2-), AMP(2-)/dAMP(2-), ADP(3-)/dADP(3-) and ATP(4-)/dATP(4-) (= NP/dNP), could be compared for the four metal ions Mg2+, Ni2+, Cu2+ and Zn2+ (= M2+). The comparisons show that complex stability and extent of macrochelate formation between the phosphate-coordinated metal ion and N7 of the purine residue is very similar (or even identical) for the AMP(2-)/dAMP(2-) and ADP(3-)/dADP(3-) pairs. In the case of the complexes formed with ATP(4-)/dATP(4-) the 2'-deoxy complexes are somewhat more stable and show also a slightly enhanced tendency for macrochelate formation. This is different for guanine nucleotides: the stabilities of the M(dGMP) complexes are clearly higher, as are the formation degrees of their macrochelates, than is the case with the M(GMP) complexes. This enhanced complex stability and greater tendency to form macrochelates can be attributed to the enhanced basicity (DeltapKaca. 0.2) of N7 in the 2'-deoxy compound. These results allow general conclusions regarding nucleic acids to be made.


Assuntos
Metais/química , Nucleotídeos/química , Difosfato de Adenosina/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Modelos Químicos , Ácidos Nucleicos/química , Nucleosídeos/química , Potenciometria , Ligação Proteica , Purinas/química , Temperatura
8.
Chemistry ; 13(6): 1804-14, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17121397

RESUMO

The interaction between divalent metal ions and nucleic acids is well known, yet knowledge about the strength of binding of labile metal ions at the various sites is very scarce. We have therefore studied the stabilities of complexes formed between the nucleic acid model d(pGpG) and the essential metal ions Mg2+ and Zn2+ as well as with the generally toxic ions Cd2+ and Pb2+ by potentiometric pH titrations; all four ions are of relevance in ribozyme chemistry. A comparison of the present results with earlier data obtained for M(pUpU)- complexes allows the conclusion that phosphate-bound Mg2+ and Cd2+ form macrochelates by interaction with N7, whereas the also phosphate-coordinated Pb2+ forms a 10-membered chelate with the neighboring phosphate diester bridge. Zn2+ forms both types of chelates with formation degrees of about 91% and 2.4% for Zn[d(pGpG)]cl/N7 and Zn[d(pGpG)]-cl/PO, respectively; the open form with Zn2+ bound only to the terminal phosphate group, Zn[d(pGpG)]-op, amounts to about 6.8 %. The various intramolecular equilibria have also been quantified for the other metal ions. Zn2+, Cu2+, and Cd2+ also form macrochelates in the monoprotonated M[H;d(pGpG)] species (the proton being at the terminal phosphate group), that is, the metal ion at N7 interacts to some extent with the P(O)2(OH)- group. Thus, this study demonstrates that the coordinating properties of the various metal ions toward a pGpG unit in a nucleic acid differ: Mg2+, Zn2+, and Cd2+ have a significant tendency to bridge the distance between N7 and the phosphate group of a (d)GMP unit, although to various extents, whereas Pb2+ (and possibly Ca2+) prefer a pure phosphate coordination.


Assuntos
Quelantes/química , Nucleotídeos de Desoxiguanina/química , Metais/química , Ácidos Nucleicos/química , Compostos Organometálicos/química , Cátions Bivalentes , Concentração de Íons de Hidrogênio , Isomerismo , Estrutura Molecular , Fosfatos/química
9.
Org Biomol Chem ; 4(6): 1085-90, 2006 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-16525552

RESUMO

The dinucleotide d(pGpG) is an often employed DNA model to study various kinds of interactions between DNA and metal ions, but its acid-base properties were not yet described in detail. In this study the six deprotonation reactions of H4[d(pGpG)]+ are quantified. The acidity constants for the release of the first proton from the terminal P(O)(OH)2 group (pKa = 0.65) and for one of the (N7)H+ sites (pKa = 2.4) are estimated. The acidity constants of the remaining four deprotonation reactions were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO3): The pKa values for the deprotonations of the second (N7)H+, the P(O)2(OH)-, and the two (N1)H sites are 2.98, 6.56, 9.54 and 10.11, respectively. Based on these results we show how to estimate acidity constants for related systems that have not been studied, e.g. pGpG, which is involved in the initiation step of a rotavirus RNA polymerase. The relevance of our results for nucleic acids in general is briefly indicated.


Assuntos
Nucleotídeos de Desoxiguanina/química , Didesoxinucleosídeos/química , Guanina/análogos & derivados , Guanina/química , Concentração de Íons de Hidrogênio , Guanosina Monofosfato/química , Cinética , Conformação Molecular , Uridina Monofosfato/química
10.
Chemistry ; 12(31): 8106-22, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16888737

RESUMO

The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H3(XMP)+, reveal that at the physiological pH of 7.5 (XMP-H)(3-) strongly dominates (and not XMP(2-) as given in textbooks); this is in contrast to the related inosine (IMP(2-)) and guanosine 5'-monophosphate (GMP(2-)) and it means that XMP should better be named as xanthosinate 5'-monophosphate. In addition, evidence is provided for a tautomeric (XMP-HN1)(3-)/(XMP-HN3)(3-) equilibrium. The stability constants of the M(H;XMP)+ species were estimated and those of the M(XMP) and M(XMP-H)- complexes (M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+) measured potentiometrically in aqueous solution. The primary M2+ binding site in M(XMP) is (mostly) N7 of the monodeprotonated xanthine residue, the proton being at the phosphate group. The corresponding macrochelates involving P(O)2(OH)- (most likely outer-sphere) are formed to approximately 65% for nearly all M2+. In M(XMP-H)- the primary M2+ binding site is (mostly) the phosphate group; here the formation degree of the N7 macrochelates varies widely from close to zero for the alkaline earth ions, to approximately 50% for Mn2+, and approximately 90% or more for Co2+, Ni2+, Cu2+, Zn2+, and Cd2+. Because for (XMP-H)(3-) the micro stability constants quantifying the M2+ affinity of the xanthosinate and PO3(2-) residues are known, one may apply a recently developed quantification method for the chelate effect to the corresponding macrochelates; this chelate effect is close to zero for the alkaline earth ions and it amounts to about one log unit for Co2+, Ni2+, Cu2+. This method also allows calculation of the formation degrees of the monodentatally coordinated isomers; this information is of relevance for biological systems because it demonstrates how metal ions can switch from one site to another through macrochelate formation. These insights are meaningful for metal-ion-dependent reactions of XMP in metabolic pathways; previous mechanistic proposals based on XMP(2-) need revision.


Assuntos
Quelantes/química , Metais/química , Ribonucleotídeos/química , Ácidos/química , Álcalis/química , Concentração de Íons de Hidrogênio , Íons/química , Potenciometria , Solubilidade , Soluções/química , Estereoisomerismo , Água/química , Xantina
11.
Proc Natl Acad Sci U S A ; 102(21): 7459-64, 2005 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15897459

RESUMO

The acidity constants for (N3)H of the uridine-type ligands (U) 5-fluorouridine, 5-chloro-2'-deoxyuridine, uridine, and thymidine (2'-deoxy-5-methyluridine) and the stability constants of the M(U-H)(+) complexes for M(2+) = Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Pb(2+) were measured (potentiometric pH titrations; aqueous solution; 25 degrees C; I = 0.1 M, NaNO(3)). Plots of logK(M(U-H))(M) vs. pK(U)(H) result in straight lines that are compared with previous plots for simple pyridine-type and o-amino(methyl)pyridine-type ligands as well as with the stabilities of the corresponding M(cytidine)(2+) complexes. The results indicate monodentate coordination to (N3)(-) in M(U-H)(+) for Co(2+) and Ni(2+). For the M(U-H)(+) species of Cd(2+), Zn(2+), or Cu(2+), increased stabilities imply that semichelates form, i.e., M(2+) is (N3)(-)-bound and coordinated water molecules form hydrogen bonds to (C2)O and (C4)O; these "double" semichelates are in equilibrium with "single" semichelates involving either (C2)O or (C4)O and possibly also with four-membered chelates for which M(2+) is innersphere-coordinated to (N3)(-) and a carbonyl oxygen. For the alkaline earth ions, semichelates dominate with the M(2+) outersphere bound to (N3)(-) and innersphere to one of the carbonyl oxygens. Mn(U-H)(+) is with its properties between those of Cd(2+) (which probably also hold for Pb(2+)) and the alkaline earth ions. In nucleic acids, M(2+)-C(O) interactions are expected, if support is provided by other primary binding sites. (N3)H may possibly be acidified via carbonyl-coordinated M(2+) to become a proton donor in the physiological pH range, at which direct (N3)(-) binding of M(2+) also seems possible.


Assuntos
Cátions/química , Quelantes/química , Metais/química , Nucleosídeos de Pirimidina/química , Equilíbrio Ácido-Base , Concentração de Íons de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Potenciometria , Água/química
12.
Chemistry ; 11(14): 4163-70, 2005 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-15861476

RESUMO

It is well known that Mg2+ and other divalent metal ions bind to the phosphate groups of nucleic acids. Subtle differences in the coordination properties of these metal ions to RNA, especially to ribozymes, determine whether they either promote or inhibit catalytic activity. The ability of metal ions to coordinate simultaneously with two neighboring phosphate groups is important for ribozyme structure and activity. However, such an interaction has not yet been quantified. Here, we have performed potentiometric pH titrations to determine the acidity constants of the protonated dinucleotide H2(pUpU)-, as well as the binding properties of pUpU3- towards Mg2+, Mn2+, Cd2+, Zn2+, and Pb2+. Whereas Mg2+, Mn2+, and Cd2+ only bind to the more basic 5'-terminal phosphate group, Pb2+, and to a certain extent also Zn2+, show a remarkably enhanced stability of the [M(pUpU)]- complex. This can be attributed to the formation of a macrochelate by bridging the two phosphate groups within this dinucleotide by these metal ions. Such a macrochelate is also possible in an oligonucleotide, because the basic structural units are the same, despite the difference in charge. The formation degrees of the macrochelated species of [Zn(pUpU)]- and [Pb(pUpU)]- amount to around 25 and 90 %, respectively. These findings are important in the context of ribozyme and DNAzyme catalysis, and explain, for example, why the leadzyme could be selected in the first place, and why this artificial ribozyme is inhibited by other divalent metal ions, such as Mg2+.


Assuntos
Metais/química , Nucleotídeos/química , RNA/química , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/química , Concentração de Íons de Hidrogênio , Íons/química , Estrutura Molecular
13.
J Biol Inorg Chem ; 9(3): 365-73, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15034770

RESUMO

The recently defined log K (M)(M)(L) versus pK(H)(H)(L) straight-line plots for L = pyridine-type (PyN) and ortho-aminopyridine-type (oPyN) ligands now allow the evaluation in a quantitative manner of the stability of the 1:1 complexes formed between cytidine (Cyd) and Ca(2+), Mg(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) (M(2+)); the corresponding stability constants, K(M)(M)(Cyd) including the acidity constant, K(H)(H)(Cyd) for the deprotonation of the (N3)H(+) site had been determined previously under exactly the same conditions as the mentioned plots. Since the stabilities of the M(PyN)(2+) and M(oPyN)(2+) complexes of Ca(2+) and Mg(2+) are practically identical, it is concluded that complex formation occurs in an outer-sphere manner, and this is in accord with the fact that in the p K(a) range 3-7 metal ion binding is independent of K(H)(H)(Pyn) or K(H)(H)(oPyN). Ca(Cyd)(2+) and Mg(Cyd)(2+) are more stable than the corresponding (outer-sphere) M(PyN)(2+) complexes and this means that the C2 carbonyl group of Cyd must participate, next to N3 which is most likely outer-sphere, in metal ion binding, leading thus to chelates; these have formation degrees of about 50% and 35%, respectively. Co(Cyd)(2+) and Ni(Cyd)(2+) show no increased stability based on the log K(M)(M)(oPyN) versus pK(H)(H)(oPyN) hence, the (C2)O group does not participate in metal ion binding, but the inner-sphere coordination to N3 is strongly inhibited by the (C4)NH(2) group. In the M(Cyd)(2+) complexes of Mn(2+), Cu(2+), Zn(2+) and Cd(2+), this inhibiting effect on M(2+) binding at N3 is partially compensated by participation of the (C2)O group in complex formation and the corresponding chelates have formation degrees between about 30% (Zn(2+)) and 83% (Cu(2+)). The different structures of the mentioned chelates are discussed in relation to available crystal structure analyses. (1). There is evidence (crystal structure studies: Cu(2+), Zn(2+), Cd(2+)) that four-membered rings form, i.e. there is a strong M(2+) bond to N3 and a weak one to (C2)O. (2). By hydrogen bond formation to (C2)O of a metal ion-bound water molecule, six-membered rings, so-called semichelates, may form. (3). For Ca(2+) and Mg(2+), and possibly Mn(2+), and their Cyd complexes, six-membered chelates are also likely with (C2)O being inner-sphere (crystal structure) and N3 outer-sphere. (4). Finally, for these metal ions also complexes with a sole outer-sphere interaction may occur. All these types of chelates are expected to be in equilibrium with each other in solution, but, depending on the metal ion, either the one or the other form will dominate. Clearly, the cytidine residue is an ambivalent binding site which adjusts well to the requirements of the metal ion to be bound and this observation is of relevance for single-stranded nucleic acids and their interactions with metal ions. In addition, the anti- syn energy barrier has been estimated as being in the order of 6-7.5 kJ/mol for cytidine derivatives in aqueous solution at 25 degrees C.


Assuntos
Citidina/química , Citidina/metabolismo , Metais/química , Metais/metabolismo , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Isomerismo , Magnésio/química , Magnésio/metabolismo , Manganês/química , Manganês/metabolismo , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA