Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14204, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648704

RESUMO

Space travel requires high-powered, efficient rocket propulsion systems for controllable launch vehicles and safe planetary entry. Interplanetary travel will rely on energy-dense propellants to produce thrust via combustion as the heat generation process to convert chemical to thermal energy. In propulsion devices, combustion can occur through deflagration or detonation, each having vastly different characteristics. Deflagration is subsonic burning at effectively constant pressure and is the main means of thermal energy generation in modern rockets. Alternatively, detonation is a supersonic combustion-driven shock offering several advantages. Detonations entail compact heat release zones at elevated local pressure and temperature. Specifically, rotating detonation rocket engines (RDREs) use detonation as the primary means of energy conversion, producing more useful available work compared to equivalent deflagration-based devices; detonation-based combustion is poised to radically improve rocket performance compared to today's constant pressure engines, producing up to 10[Formula: see text] increased thrust. This new propulsion cycle will also reduce thruster size and/or weight, lower injection pressures, and are less susceptible to engine-damaging acoustic instabilities. Here we present a collective effort to benchmark performance and standardize operability of rotating detonation rocket engines to develop the RDRE technology readiness level towards a flight demonstration. Key detonation physics unique to RDREs, driving consistency and control of chamber dynamics across the engine operating envelope, are identified and addressed to drive down the variability and stochasticity observed in previous studies. This effort demonstrates an RDRE operating consistently across multiple facilities, validating this technology's performance as the foundation of RDRE architecture for future aerospace applications.

2.
Phys Rev E ; 104(2-1): 024210, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525544

RESUMO

Proposed is a phenomenological modeling framework that is capable of reproducing the diverse experimental observations of the nonlinear, combustion wave propagation in a rotating detonation engine (RDE), specifically the nucleation and formation of combustion pulses, the soliton-like interactions between these combustion fronts, and the fundamental, underlying Hopf bifurcation to time-periodic modulation of the waves. In this framework, the mode-locked structures are classified as autosolitons or stably propagating nonlinear waves where the local physics of nonlinearity, gain, and dissipation exactly balance. We find that the global dominant balance physics in the RDE combustion chamber are dissipative and multiscale in nature: The fast combustion physics provide the energy input to form the fundamental mode-locked autosoliton state, while the slow physics of exhaust and propellant recovery shape the waveform and dictate the number of autosolitons. In this manner, the global multiscale balance physics give rise to the stable structures-not exclusively the frontal dynamics prescribed by classical detonation theory. Experimental observations and numerical models of the RDE combustion chamber are in strong qualitative agreement. Moreover, numerical continuation (computational bifurcation tracking) of the RDE analog system indicates that a Hopf bifurcation of the steadily propagating pulse train leads to the fundamental instability of the RDE, or time-periodic modulation of the waves. Along branches of Hopf orbits in parameter space exist a continuum of wave-pair interactions that exhibit solitonic interactions of varying strength.

3.
Phys Rev E ; 101(1-1): 013106, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069601

RESUMO

Direct observation of a rotating detonation engine combustion chamber has enabled the extraction of the kinematics of its detonation waves. These records exhibit a rich set of instabilities and bifurcations arising from the interaction of coherent wave fronts and global gain dynamics. We develop a model of the observed dynamics by recasting the Majda detonation analog as an autowave process. The solution fronts become attractors of the engine, i.e., mode-locked rotating detonation waves. We find that denotative energy release competes with dissipation and gain recovery to produce the observed dynamics and a bifurcation structure common to other driven-dissipative systems, such as mode-locked lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA