Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 4): 955-967, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900456

RESUMO

The demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed. This system is combined with six sets of two-dimensional (2D) CdTe detectors for high-energy X-rays, and various automation systems, including a system for automatic switching among large sample environmental equipment, have been developed in the third experimental hutch of the insertion device beamline BL13XU at SPring-8. In this diffractometer system, high-brilliance and high-energy X-rays ranging from 16 to 72 keV are available. The powder diffraction data measured under ambient and various nonambient conditions can be analysed using Rietveld refinement and the pair distribution function. Using the 2D CdTe detectors with variable sample-to-detector distance, three types of scan modes have been established: standard, single-step and high-resolution. A major feature is the ability to measure a whole powder pattern with millisecond resolution. Equally important, this system can measure powder diffraction data with high Q exceeding 30 Å-1 within several tens of seconds. This capability is expected to contribute significantly to new research avenues using machine learning and artificial intelligence by utilizing the large amount of data obtained from high-throughput measurements.

2.
J Virol ; 97(5): e0043823, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37042780

RESUMO

Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host endosomal sorting complex required for transport (ESCRT) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection and, specifically, the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a small interfering RNA (siRNA) screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology. IMPORTANCE Enveloped viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT complexes. Some enveloped viruses utilize their late (L-) domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped virions, but the underlying molecular mechanisms involved remain elusive. Here, we showed that TSG101, one of the ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via the L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Vírus da Raiva , Raiva , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Morfogênese , Raiva/metabolismo , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Liberação de Vírus , Linhagem Celular , Animais
3.
J Neurovirol ; 29(4): 367-375, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552415

RESUMO

West Nile virus (WNV) has emerged as a significant cause of viral encephalitis in humans and horses. However, the pathogenesis of the West Nile encephalitis remains unclear. Microglia are activated by WNV infection, and the pathogenic involvement of their phenotypes is controversial. In this study, we examined the diversity of microglia phenotypes caused by WNV infection by assessing various microglia markers and identified disease-associated microglia in WNV-infected mouse brain tissue. Cells positive for general microglia markers such as Iba1, P2RY12, or TMEM119 were detected in the control and WNV-infected brain tissue. The morphology of the positive cells in brain tissue infected by WNV was different from that of control brain tissue, indicating that WNV infection induced activation of microglia. The activated microglia were classified into various phenotypes by investigation of specific marker expression. Among the activated microglia, disease-associated microglia that were positive for CD11c and weakly positive for TMEM119 were detected close to the WNV-infected cells. These results indicate that WNV infection induces activation of diverse microglia phenotypes and that disease-associated microglia may be associated with the pathogenicity of WNV infection in the mouse brain.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Camundongos , Animais , Humanos , Cavalos , Microglia , Encéfalo , Fenótipo
4.
Appl Microbiol Biotechnol ; 107(24): 7515-7529, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831184

RESUMO

The most conserved fusion loop (FL) domain present in the flavivirus envelope protein has been reported as a dominant epitope for cross-reactive antibodies to mosquito-borne flaviviruses (MBFVs). As a result, establishing accurate serodiagnosis for MBFV infections has been difficult as anti-FL antibodies are induced by both natural infection and following vaccination. In this study, we modified the most conserved FL domain to overcome this cross-reactivity. We showed that the FL domain of lineage I insect-specific flavivirus (ISFV) has differences in antigenicity from those of MBFVs and lineage II ISFV and determined the key amino acid residues (G106, L107, or F108), which contribute to the antigenic difference. These mutations were subsequently introduced into subviral particles (SVPs) of dengue virus type 2 (DENV2), Zika virus (ZIKV), Japanese encephalitis virus (JEV), and West Nile virus (WNV). In indirect enzyme-linked immunosorbent assays (ELISAs), these SVP mutants when used as antigens reduced the binding of cross-reactive IgG and total Ig induced by infection of ZIKV, JEV, and WNV in mice and enabled the sensitive detection of virus-specific antibodies. Furthermore, immunization of ZIKV or JEV SVP mutants provoked the production of antibodies with lower cross-reactivity to heterologous MBFV antigens compared to immunization with the wild-type SVPs in mice. This study highlights the effectiveness of introducing mutations in the FL domain in MBFV SVPs with lineage I ISFV-derived amino acids to produce SVP antigens with low cross-reactivity and demonstrates an improvement in the accuracy of indirect ELISA-based serodiagnosis for MBFV infections. KEY POINTS: • The FL domain of Lineage I ISFV has a different antigenicity from that of MBFVs. • Mutated SVPs reduce the binding of cross-reactive antibodies in indirect ELISAs. • Inoculation of mutated SVPs induces antibodies with low cross-reactivity.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Flavivirus , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Animais , Camundongos , Flavivirus/genética , Zika virus/genética , Anticorpos Antivirais , Vírus do Nilo Ocidental/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Mutação , Reações Cruzadas
5.
PLoS Pathog ; 16(1): e1008238, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971978

RESUMO

West Nile virus (WNV) belongs to the Flaviviridae family and has emerged as a significant cause of viral encephalitis in birds and animals including humans. WNV replication directly induces neuronal injury, followed by neuronal cell death. We previously showed that accumulation of ubiquitinated protein aggregates was involved in neuronal cell death in the WNV-infected mouse brain. In this study, we attempted to elucidate the mechanisms of the accumulation of protein aggregates in the WNV-infected cells. To identify the viral factor inducing the accumulation of ubiquitinated proteins, intracellular accumulation of ubiquitinated proteins was examined in the cells expressing the viral protein. Expression of capsid (C) protein induced the accumulation, while mutations at residues L51 and A52 in C protein abrogated the accumulation. Wild-type (WT) or mutant WNV in which mutations were introduced into the residues was inoculated into human neuroblastoma cells. The expression levels of LC3-II, an autophagy-related protein, and AMP-activated protein kinase (AMPK), an autophagy inducer, were reduced in the cells infected with WT WNV, while the reduction was not observed in the cells infected with WNV with the mutations in C protein. Similarly, ubiquitination and degradation of AMPK were only observed in the cells infected with WT WNV. In the cells expressing C protein, AMPK was co-precipitated with C protein and mutations in L51 and A52 reduced the interaction. Although the viral replication was not affected, the accumulation of ubiquitinated proteins in brain and neurological symptoms were attenuated in the mouse inoculated with WNV with the mutations in C protein as compared with that with WT WNV. Taken together, ubiquitination and degradation of AMPK by C protein resulted in the inhibition of autophagy and the accumulation of protein aggregates, which contributes to the development of neurological disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Proteínas do Capsídeo/fisiologia , Doenças do Sistema Nervoso/virologia , Vírus do Nilo Ocidental/fisiologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/patologia , Neurônios/metabolismo , Neurônios/virologia , Agregação Patológica de Proteínas , Proteólise , Ubiquitinação , Células Vero , Proteínas Virais/metabolismo
6.
Microbiol Immunol ; 66(5): 234-237, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194811

RESUMO

Tick-borne encephalitis virus (TBEV) is a zoonotic virus that causes encephalitis in humans. Various deletions have been reported in a variable region of the 3' untranslated region of the TBEV genome. This study analyzed the role of a Y-shaped secondary structure in the pathogenicity of TBEV by using reverse genetics. Deletion of the structure increased the mortality rate of virus-infected mice but did not affect the virus multiplication in cultured cells and organs. The results indicate that the secondary structure is involved in the regulation of TBEV pathogenesis.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Animais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/patologia , Genômica , Camundongos , Conformação de Ácido Nucleico , RNA , Virulência
7.
Angew Chem Int Ed Engl ; 61(39): e202209187, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35929578

RESUMO

Topochemical reactions have led to great progress in the discovery of new metastable compounds with novel chemical and physical properties. With these reactions, the overall crystal structure of the host material is generally maintained. Here we report a topochemical synthesis of a hexagonal nitride hydride, h-Ca3 CrN3 H, by heating an orthorhombic nitride, o-Ca3 CrN3 , under hydrogen at 673 K, accompanied by a rotational structural transformation. The hydrogen intercalation modifies the Ca-N rock-salt-like atomic packing in o-Ca3 CrN3 to a face-sharing octahedral chain in h-Ca3 CrN3 H, mimicking a "hinged tessellation" movement. In addition, the h-Ca3 CrN3 H exhibited stable ammonia synthesis activity when used as a catalyst.

8.
Microbiol Immunol ; 65(11): 481-491, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34260084

RESUMO

Duck Tembusu virus (DTMUV) and Japanese encephalitis virus (JEV) are mosquito-borne flaviviruses. These two viruses infect ducks; however, they show different neurological outcomes. The mechanism of DTMUV- and JEV-induced neuronal death has not been well investigated. In the present study examined the differences in the mechanisms involved in virus-induced cell death and innate immune responses between the DTMUV KPS54A61 strain and the JEV JaGAr-01 strain using primary duck neurons (DN) and duck fibroblasts (CCL-141). DN and CCL-141 were permissive for the infection and replication of these two viruses, which up-regulated the expression of innate immunity genes. Both DTMUV and JEV induced cell death via a caspase-3-dependent manner; however, DTMUV triggered more cell death than did JEV in both CCL-141 and DN. These findings suggest that DTMUV infection causes apoptosis in duck neurons and fibroblasts more strongly than JEV. The levels of the mRNA expression of innate immunity-related genes after DTMUV infection were generally higher than the levels after JEV infection, suggesting that DTMUV-induced immune response in duck cells may exhibit toxic effects rather than protective effects.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Patos , Fibroblastos , Infecções por Flavivirus/veterinária , Neurônios
9.
Uirusu ; 71(1): 79-86, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-35526998

RESUMO

West Nile virus, which causes serious encephalitis in humans and horses, infects neuronal cells and induces cell death. As the neuronal cell death leads to the induction of various inflammatory responses, elucidation of the molecular mechanism of cell death is important for development of a treatment for West Nile encephalitis. In this paper, we investigated the pathology of the neuronal cells infected with West Nile virus and summarized the mechanism of neuronal cell death and their effect on the neuropathogenesis.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Morte Celular , Cavalos , Neurônios , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/veterinária
10.
J Gen Virol ; 101(5): 497-509, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134377

RESUMO

Tick-borne encephalitis virus (TBEV) is a zoonotic virus in the genus Flavivirus, family Flaviviridae. TBEV is widely distributed in northern regions of the Eurasian continent, including Japan, and causes severe encephalitis in humans. Tick-borne encephalitis (TBE) was recently reported in central Hokkaido, and wild animals with anti-TBEV antibodies were detected over a wide area of Hokkaido, although TBEV was only isolated in southern Hokkaido. In this study, we conducted a survey of ticks to isolate TBEV in central Hokkaido. One strain, designated Sapporo-17-Io1, was isolated from ticks (Ixodes ovatus) collected in Sapporo city. Sequence analysis revealed that the isolated strain belonged to the Far Eastern subtype of TBEV and was classified in a different subcluster from Oshima 5-10, which had previously been isolated in southern Hokkaido. Sapporo-17-Io1 showed similar growth properties to those of Oshima 5-10 in cultured cells and mouse brains. The mortality rate of mice infected intracerebrally with each virus was similar, but the survival time of mice inoculated with Sapporo-17-Io1 was significantly longer than that of mice inoculated with Oshima 5-10. These results indicate that the neurovirulence of Sapporo-17-Io1 was lower than that of Oshima 5-10. Using an infectious cDNA clone, the replacement of genes encoding non-structural genes from Oshima 5-10 with those from Sapporo-17-Io1 attenuated the neuropathogenicity of the cloned viruses. This result indicated that the non-structural proteins determine the neurovirulence of these two strains. Our results provide important insights for evaluating epidemiological risk in TBE-endemic areas of Hokkaido.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/virologia , Ixodes/virologia , Animais , Animais Selvagens/virologia , Encéfalo/virologia , Linhagem Celular , Vírus da Encefalite Transmitidos por Carrapatos/genética , Feminino , Japão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas não Estruturais Virais/genética , Virulência/genética
11.
Proc Natl Acad Sci U S A ; 114(37): 9960-9965, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847946

RESUMO

Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, little is known about the detailed mechanisms of viral replication and pathogenicity in the brain. Previously, we reported that the genomic RNA of tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is transported and replicated in the dendrites of neurons. In the present study, we analyzed the transport mechanism of the viral genome to dendrites. We identified specific sequences of the 5' untranslated region of TBEV genomic RNA that act as a cis-acting element for RNA transport. Mutated TBEV with impaired RNA transport in dendrites caused a reduction in neurological symptoms in infected mice. We show that neuronal granules, which regulate the transport and local translation of dendritic mRNAs, are involved in TBEV genomic RNA transport. TBEV genomic RNA bound an RNA-binding protein of neuronal granules and disturbed the transport of dendritic mRNAs. These results demonstrated a neuropathogenic virus hijacking the neuronal granule system for the transport of viral genomic RNA in dendrites, resulting in severe neurological disease.


Assuntos
Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/fisiopatologia , Flavivirus/patogenicidade , Animais , Transporte Biológico/fisiologia , Encéfalo/patologia , Dendritos/patologia , Dendritos/fisiologia , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Genoma Viral , Neurônios/patologia , RNA , Proteínas de Ligação a RNA/genética , Carrapatos , Virulência , Replicação Viral
12.
Inorg Chem ; 58(21): 14304-14315, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964663

RESUMO

Anomalous successive structural transitions in layered 1T-CrSe2 with an unusual Cr4+ valency were investigated by synchrotron X-ray diffraction. 1T-CrSe2 exhibits dramatic structural changes in in-plane Cr-Cr and interlayer Se-Se distances, which originate from two interactions: (i) in-plane Cr-Cr interactions derived from Peierls-like trimerization instabilities on the orbitally assisted one-dimensional chains and (ii) interlayer Se-Se interactions through p-p hybridization. As a result, 1T-CrSe2 has the unexpected ground state of an antiferromagnetic metal with multiple Cr linear trimers with three-center-two-electron σ bonds. Interestingly, partial substitution of Se for S atoms in 1T-CrSe2 changes the ground state from an antiferromagnetic metal to an insulator without long-range magnetic ordering, which is due to the weakening of interlayer interactions between anions. The unique low-temperature structures and electronic states of this system are determined by the competition and cooperation of in-plane Cr-Cr and interlayer Se-Se interactions.

13.
Arch Virol ; 164(8): 2165-2170, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31154511

RESUMO

Zika virus (ZIKV) circulation occurs between non-human primates (NHPs) in a sylvatic transmission cycle. To investigate evidence of flavivirus infection in NHPs in Zambia, we performed a plaque reduction neutralization test (PRNT) to quantify neutralizing antibodies. PRNT revealed that sera from NHPs (African green monkeys and baboons) exhibited neutralizing activity against ZIKV (34.4%; 33/96), whereas a PRNT for yellow fever virus using NHP sera showed no neutralization activity. ZIKV genomic RNA was not detected in splenic tissues from NHPs, suggesting that the presence of anti-ZIKV neutralizing antibodies represented resolved infections. Our evidence suggests that ZIKV is maintained in NHP reservoirs in Zambia.


Assuntos
Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Vírus da Dengue/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Primatas , Testes Sorológicos/métodos , Zâmbia
14.
J Virol ; 91(21)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814513

RESUMO

Tick-borne encephalitis virus (TBEV) causes a severe and potentially fatal neuroinfection in humans. Despite its high medical relevance, no specific antiviral therapy is currently available. Here we demonstrate that treatment with a nucleoside analog, 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA), substantially improved disease outcomes, increased survival, and reduced signs of neuroinfection and viral titers in the brains of mice infected with a lethal dose of TBEV. To investigate the mechanism of action of 7-deaza-2'-CMA, two drug-resistant TBEV clones were generated and characterized. The two clones shared a signature amino acid substitution, S603T, in the viral NS5 RNA-dependent RNA polymerase (RdRp) domain. This mutation conferred resistance to various 2'-C-methylated nucleoside derivatives, but no cross-resistance was seen with other nucleoside analogs, such as 4'-C-azidocytidine and 2'-deoxy-2'-beta-hydroxy-4'-azidocytidine (RO-9187). All-atom molecular dynamics simulations revealed that the S603T RdRp mutant repels a water molecule that coordinates the position of a metal ion cofactor as 2'-C-methylated nucleoside analogs approach the active site. To investigate its phenotype, the S603T mutation was introduced into a recombinant TBEV strain (Oshima-IC) generated from an infectious cDNA clone and into a TBEV replicon that expresses a reporter luciferase gene (Oshima-REP-luc2A). The mutants were replication impaired, showing reduced growth and a small plaque size in mammalian cell culture and reduced levels of neuroinvasiveness and neurovirulence in rodent models. These results indicate that TBEV resistance to 2'-C-methylated nucleoside inhibitors is conferred by a single conservative mutation that causes a subtle atomic effect within the active site of the viral NS5 RdRp and is associated with strong attenuation of the virus.IMPORTANCE This study found that the nucleoside analog 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA) has high antiviral activity against tick-borne encephalitis virus (TBEV), a pathogen that causes severe human neuroinfections in large areas of Europe and Asia and for which there is currently no specific therapy. Treating mice infected with a lethal dose of TBEV with 7-deaza-2'-CMA resulted in significantly higher survival rates and reduced the severity of neurological signs of the disease. Thus, this compound shows promise for further development as an anti-TBEV drug. It is important to generate drug-resistant mutants to understand how the drug works and to develop guidelines for patient treatment. We generated TBEV mutants that were resistant not only to 7-deaza-2'-CMA but also to a broad range of other 2'-C-methylated antiviral medications. Our findings suggest that combination therapy may be used to improve treatment and reduce the emergence of drug-resistant viruses during nucleoside analog therapy for TBEV infection.

15.
J Biol Chem ; 291(12): 6559-68, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26817838

RESUMO

West Nile virus (WNV) particles assemble at and bud into the endoplasmic reticulum (ER) and are secreted from infected cells through the secretory pathway. However, the host factor related to these steps is not fully understood. Rab proteins, belonging to the Ras superfamily, play essential roles in regulating many aspects of vesicular trafficking. In this study, we sought to determine which Rab proteins are involved in intracellular trafficking of nascent WNV particles. RNAi analysis revealed that Rab8b plays a role in WNV particle release. We found that Rab8 and WNV antigen were colocalized in WNV-infected human neuroblastoma cells, and that WNV infection enhanced Rab8 expression in the cells. In addition, the amount of WNV particles in the supernatant of Rab8b-deficient cells was significantly decreased compared with that of wild-type cells. We also demonstrated that WNV particles accumulated in the recycling endosomes in WNV-infected cells. In summary, these results suggest that Rab8b is involved in trafficking of WNV particles from recycling endosomes to the plasma membrane.


Assuntos
Endossomos/enzimologia , Vírus do Nilo Ocidental/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Transporte Biológico , Chlorocebus aethiops , Endossomos/virologia , Fibroblastos/enzimologia , Fibroblastos/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Knockout , Transporte Proteico , Vesículas Transportadoras/virologia , Células Vero , Proteínas Virais , Liberação de Vírus , Replicação Viral
16.
Inorg Chem ; 55(15): 7407-13, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27400024

RESUMO

Physical properties of new S = 3/2 triangular-lattice compounds LiCrSe2, LiCrTe2, and NaCrTe2 have been investigated by X-ray diffraction and magnetic measurements. These compounds crystallize in the ordered NiAs-type structure, where alkali metal ions and Cr atoms stack alternately. Despite their isomorphic structures, magnetic properties of these three compounds are different; NaCrTe2 has an A-type spin structure with ferromagnetic layers, LiCrTe2 is likely to exhibit a helical spin structure, and LiCrSe2 shows a first-order-like phase transition from the paramagnetic trigonal phase to the antiferromagnetic monoclinic phase. In these compounds and the other chromium chalcogenides with a triangular lattice, we found a general relationship between the Curie-Weiss temperature and magnetic structures. This relation indicates that the competition between the antiferromagnetic direct d-d exchange interaction and the ferromagnetic superexchange interaction plays an important role in determining the ground state of chromium chalcogenides.

17.
J Virol ; 88(17): 9819-29, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24942567

RESUMO

UNLABELLED: Bats are known to harbor emerging RNA viruses. Recent studies have used high-throughput sequencing technology to identify various virus species, including DNA viruses that are harbored by bats; however, little is known about the nature of these potentially novel viruses. Here, we report the characterization of a novel herpesvirus isolated from an Indonesian pteropodid bat. The virus, tentatively named fruit bat alphaherpesvirus 1 (FBAHV1), has a double-stranded DNA genome of 149,459 bp. The phylogenetic analyses suggested that FBAHV1 is phylogenetically grouped with simplexviruses within the subfamily Alphaherpesvirinae. Inoculation of FBAHV1 into laboratory mice caused a lethal infection. Virus infection was observed in lung, liver, and brain tissue. Serological and PCR screening revealed that fruit bats infected with FBAHV1 or its related virus are widely distributed in Indonesia. The identification of FBAHV1 makes a considerable contribution to our understanding of simplexviruses associated with bats. IMPORTANCE: Bats are known to harbor emerging viruses, such as lyssaviruses, henipaviruses, severe acute respiratory syndrome-like coronaviruses, and filoviruses. Although alphaherpesviruses are disseminated in humans and other animals, there is little information about their distribution in bats. Here, we isolated a previously unknown alphaherpesvirus from an Indonesian fruit bat. Genome sequence analysis suggested that the virus is a member of the genus Simplexvirus within the subfamily Alphaherpesvirinae, which also includes common human viruses, such as herpes simplex virus 1 and herpes simplex virus 2. FBAHV1 is the first bat-derived alphaherpesvirus whose complete genome has been sequenced.


Assuntos
Alphaherpesvirinae/classificação , Alphaherpesvirinae/isolamento & purificação , Quirópteros/virologia , Infecções por Herpesviridae/veterinária , Alphaherpesvirinae/genética , Animais , Encéfalo/virologia , Análise por Conglomerados , DNA/química , DNA/genética , DNA Viral/química , DNA Viral/genética , Modelos Animais de Doenças , Feminino , Genoma Viral , Infecções por Herpesviridae/virologia , Indonésia/epidemiologia , Fígado/virologia , Pulmão/virologia , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Filogenia , Prevalência , Análise de Sequência de DNA
18.
Arch Virol ; 160(4): 1075-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25670407

RESUMO

Bats are an important natural reservoir for a variety of viral pathogens, including polyomaviruses (PyVs). The aims of this study were: (i) to determine which PyVs are present in bats in Indonesia and (ii) to analyze the evolutionary relationships between bat PyVs and other known PyVs. Using broad-spectrum polymerase chain reaction (PCR)-based assays, we screened PyV DNA isolated from spleen samples from 82 wild fruit bats captured in Indonesia. Fragments of the PyV genome were detected in 10 of the 82 spleen samples screened, and eight full-length viral genome sequences were obtained using an inverse PCR method. A phylogenetic analysis of eight whole viral genome sequences showed that BatPyVs form two distinct genetic clusters within the proposed genus Orthopolyomavirus that are genetically different from previously described BatPyVs. Interestingly, one group of BatPyVs is genetically related to the primate PyVs, including human PyV9 and trichodysplasia spinulosa-associated PyV. This study has identified the presence of novel PyVs in fruit bats in Indonesia and provides genetic information about these BatPyVs.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças/virologia , Polyomavirus/isolamento & purificação , Animais , Sequência de Bases , Genoma Viral , Humanos , Indonésia , Dados de Sequência Molecular , Filogenia , Polyomavirus/classificação , Polyomavirus/genética , Baço/virologia , Proteínas Virais/genética
19.
Arch Virol ; 160(4): 1113-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25643817

RESUMO

Bats have been shown to serve as natural reservoirs for numerous emerging viruses including severe acute respiratory syndrome coronavirus (SARS-CoV). In the present study, we report the discovery of bat CoV genes in Indonesian Moluccan naked-backed fruit bats (Dobsonia moluccensis). A partial RNA-dependent RNA polymerase gene sequence was detected in feces and tissues samples from the fruit bats, and the region between the RdRp and helicase genes could also be amplified from fecal samples. Phylogenetic analysis suggested that these bat CoVs are related to members of the genus Betacoronavirus.


Assuntos
Quirópteros/virologia , Coronavirus/genética , Coronavirus/isolamento & purificação , Reservatórios de Doenças/virologia , Genoma Viral , Animais , Coronavirus/classificação , Indonésia , Dados de Sequência Molecular , Filogenia
20.
Uirusu ; 64(1): 25-34, 2014.
Artigo em Japonês | MEDLINE | ID: mdl-25765977

RESUMO

Recently, the family Polyomaviridae was classified as 3 genera, such as Orthopolyomavirus, Wukipolyomavirus which contain mammalian polyomaviruses and Avipolyomavirus which only contain avian polyomaviruses. We have recently isolated novel polyomaviruses, including Mastomys Polyoamvirus (MasPyV) and Vervet monkey Polyoamvirus-1 (VmPyV-1) by epidemiological activities and examined functions of their encoding proteins. In addition, we have been investigating the mechanisms of replication of human polyomavirus, JC polyomavirus (JCPyV). We recently obtained the results of function of JCVPyV-encoding proteins, including early protein (Large T antigen) and late proteins (VP1 and Agno). In this review, we summarized the data of our basic research activities.


Assuntos
Polyomavirus , Animais , Antígenos Virais de Tumores/fisiologia , Cafeína/farmacologia , Ciclo Celular/genética , Replicação do DNA , DNA Viral/genética , Genoma Viral/genética , Humanos , Polyomavirus/classificação , Polyomavirus/genética , Polyomavirus/fisiologia , Infecções por Polyomavirus/epidemiologia , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/virologia , Vírion/fisiologia , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA